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1 Purpose

The Assessment Operation Group in the Washington State Department of
Health is coordinating the development of guidelines related to data devel-
opment and use in order to promote good professional practice among staff
involved in assessment activities within the Washington State Department
of Health and in Local Health Jurisdictions in Washington. While the guide-
lines are intended for an audience of differing levels of training related to
data development and use, they assume a basic knowledge of epidemiology
and biostatistics. They are not intended to recreate basic texts and other
sources of information related to the topics covered by the guidelines, but
rather they focus on issues commonly encountered in public health practice
and where applicable, to issues unique to Washington state.

2 Scope of these guidelines

These guidelines describe what confidence intervals are, and why and when
they are used. We recommend methods for calculating confidence intervals in
a few special circumstances that often arise in government public health work.
However, a general description of how to calculate confidence intervals and
formulae for calculating confidence intervals in a wide variety of situations
are beyond the scope of these guidelines.
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3 Basics

Confidence intervals provide a means of assessing and reporting the precision
of a point estimate, such as a mortality or hospitalization rate or a frequency
of reported behaviors. Confidence intervals account for the uncertainty that
arises from the natural variation inherent in the world around us. In the spe-
cial case of sample surveys, confidence intervals also account for the difference
between a sample from a population and the population itself. Confidence
intervals do not account for several other sources of uncertainty in point es-
timates, including missing or incomplete data or other data errors, or bias
resulting from non-response or poor data collection. When confidence inter-
vals are used to describe health data such as incidence or mortality rates,
confidence levels of 95% are generally used (although 90% or 99% confidence
intervals are not uncommon). Confidence intervals are sometimes used as a
test of significance (see below).

What is a confidence interval?

A confidence interval is a range of values that is normally used to describe the
uncertainty around a point estimate of a quantity, for example, a mortality
rate. Therefore confidence intervals are a measure of the variability in the
data. Generally speaking, confidence intervals describe how much different
the point estimate could have been if the underlying conditions stayed the
same, but chance had led to a different set of data. Confidence intervals
are calculated with a stated probability (say 95%), and we say that there
is a 95% chance that the confidence interval covers the true value. Most
confidence intervals are calculated as 95% confidence intervals for the same
reason that most statistical tests are done at the 0.05 level—in other words,
only because it’s conventional. It is completely arbitrary that we consider
a result that would happen only 5 out of 100 times by chance as being
statistically significant, while we consider one happening 6 out of 100 times
as not being statistically significant. It is good to remember that the true
population value is a constant, even though its value is unknown, but a
confidence interval is a random quantity whose value depends on the random
sample or data from which it is calculated. Therefore we describe a 95%
(say) confidence interval as having a 95% probability of covering the true
value, rather than saying that there is a 95% probability that the true value
falls within the confidence interval.

When should confidence intervals be used?

Confidence intervals or p-values can be used whenever there is a need to de-
scribe the uncertainty in a point estimate. This is always the case when the
estimate is derived from a sample. While confidence intervals may provide
a less precise measure of statistical significance than p-values do, we recom-



mend confidence intervals because they provide a better description of the
range of possible values and are less subject to misinterpretation.

There are a few in public health who believe that confidence intervals should
not be used around estimates derived from "population’ statistics such as the
death rate in a given population, because they believe there is no statistical
uncertainty in such estimates. This belief is contrary to the statistical the-
ory underlying confidence intervals, and the biological and random processes
governing the occurrence of events such as deaths and illnesses (Brillinger,
1986).

Confidence intervals as statistical tests

In a one sample case, as for example if one is comparing the age-adjusted rate
for a particular county to a standard value, confidence intervals are equivalent
to statistical tests. That is, if a 95% confidence interval around the county’s
age-adjusted rate excludes the comparison value, then a statistical test for
the difference between the two values would be significant at the 0.05 level.
It is tempting to use confidence intervals as statistical tests in two sample
cases, for example, to say that if the confidence intervals around the age-
adjusted rates in two counties overlap, then the rates are not significantly
different, or vice versa. Although this may be a good approximation to a
statistical test, it is not equivalent to one. When each confidence interval is
constructed, it takes into account the sample size and variance in the one
sample for which it is constructed. A proper statistical test for the difference
between two samples will take into account the larger pooled sample size
of the two samples together, and therefore provide a different result. This
error is conservative, that is, in some cases an appropriate statistical test
would indicate a statistically significant difference even though the confidence
intervals do overlap, falsely implying no significant difference. However, if
two confidence intervals do not overlap, a comparable statistical test would
always indicate a statistically significant difference.

Standardized mortality or morbidity ratios (SMRs) should never be com-
pared by assessing overlapping confidence intervals. An SMR for a particu-
lar population, say a county, is essentially an age-adjusted rate with the age
distribution in that county being used as the standard. Therefore, the SMR
for a different county is an age-adjusted rate with a different population as
the standard. Because of this, SMRs should only be compared to the null
value of 100, and not to each other (see the

Guidelines for Using and Developing Rates for Public Health Assessment).



http://www.doh.wa.gov/Portals/1/Documents/5500/Rateguide.pdf

4 Recommended standards for specific situa-
tions

It is beyond the scope of these guidelines to recommend methods for calcu-
lating confidence intervals for the vast majority of situations in which they
are needed.

However, we do describe how to calculate confidence intervals in several situ-
ations that commonly arise in government public health work. These include
confidence intervals for age-adjusted rates, crude rates and age-specific rates,
for SMRs, and for binomial proportions.

4.1 The normal approximation method

In many simple situations, especially those involving normally-distributed
data, or large samples of data from other distributions, the normal approx-
imation may be used to calculate the confidence interval. In this method,
confidence intervals are given by

i Zaj2\/ var(j) (1)

where g is the parameter of interest (for example, a rate), [ is its estimated

value, var(fi) is its estimated variance, and z,/o is the «/2-level normal de-
viate (e.g. 1.96 for 95% confidence intervals).

4.2 Age-adjusted rates

For a description of how and when to calculate age-adjusted rates, see the
Guidelines for Using and Developing Rates for Public Health Assessment.

We recommend that confidence intervals for age-adjusted rates be calculated
with the method based on the gamma distribution (Fay and Feuer, 1997).
This method produces valid confidence intervals even when the number of
cases is very small. When the number of cases is large these confidence
intervals are equivalent to those produced with more traditional methods, as
described by Chiang (1961) and Brillinger (1986).

Although the derivation of this method is based on the gamma distribution,
the relationship between the gamma and x? distributions allows the formulae
to be expressed in terms of quantiles of the y? distribution, which may be
more convenient for computation.


http://www.doh.wa.gov/Portals/1/Documents/5500/Rateguide.pdf
http://www.doh.wa.gov/Portals/1/Documents/5500/Rateguide.pdf

Notation

Say the age-adjusted rates are calculated according to the following. Multiply
the age-specific rates in the target population by the age distribution of the
standard population:

where m is the number of age groups, d; is the number of deaths (or other
events) in age group ¢, P; is the population in age group i, and s; is the
proportion of the standard population in age group ¢. This is a weighted
sum of Poisson random variables, with the weights being (s;/P;).

The variance is given by

Confidence intervals

Then the confidence intervals are calculated according to these formulae:
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where y is the age-adjusted rate, v is the variance as calculated in equation 3,
wyy is the maximum of the weights s;/P;, 1 — « is the confidence level desired

(i.e. if 95% confidence intervals are needed, use o = 0.05), and (x?);?! is

the inverse of the y? distribution with x degrees of freedom. A fragment of
SAS code that illustrates how to implement these two equations in SAS is

available here.

4.3 SMRs

For standardized mortality or morbidity ratios (SMRs) we recommend two
methods—one to be used for large numbers, where there are 100 or more
observed cases, and another for smaller numbers, where there are less than
100 observed cases.


http://www.doh.wa.gov/Portals/1/Documents/1500/ConfInt-Gamma-Part-SAS.txt

Notation

Say the SMR is given by (O/E) - 100, where O is the number of observed
cases and F is the number of expected cases.

Large numbers

For large numbers, we recommend the following method (Breslow and Day,
1987, p69).
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where z,/, denotes the (1 —a/2)-level standard normal deviate (e.g. use 1.96
for 95% confidence intervals).

Small numbers

If the number of observed cases is less than 100, we recommend that the
confidence interval be calculated directly from the Poisson distribution. To
do this, use the Poisson distribution to calculate a confidence interval for
the observed number of cases, and then plug the upper and lower limits of
that confidence interval into the standard formula for the SMR to obtain the
confidence interval for the SMR. E.g. if LL is the lower limit and UL the
upper limit for the confidence interval around the observed number of cases,
then the confidence limits for the SMR are given by

Lower Limit = (LL/FE) - 100 (8)

Upper Limit = (UL/E) - 100 9)

A SAS macro (Daly, 1992) for computing these confidence limits is avail-
able here. For 95% confidence intervals, the upper and lower limits for the
observed number may be taken from Table 1.

4.4 Crude and age-specific rates

Crude and age-specific rates are assumed to follow the Poisson distribution.
Just as with SMRs, we recommend that the confidence intervals be calculated
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Table 1: Poisson distribution 95% confidence limits.

Lower Upper Lower Upper
Observed Limit Limit Observed Limit Limit
0  0.0000  2.9957 50 37.1110  65.919
1 0.0253  5.5716 51 37.9728  67.056
2 0.2422  7.2247 52 38.8361  68.191
3 0.6187  8.7673 53 39.7006  69.325
4 1.0899 10.2416 54 40.5665  70.458
5 1.6235 11.6683 55 41.4335  71.590
6 22019 13.0595 56 423018  72.721
7 28144 14.4227 57 43.1712  73.850
8  3.4538 15.7632 58 44.0418  74.978
9  4.1154 17.0848 59 44.9135  76.106
10 4.7954 18.3904 60 45.7863  77.232
11 54912 19.6820 61 46.6602  78.357
12 6.2006 20.9616 62 47.5350  79.481
13 6.9220 22.2304 63 48.4109 80.604
14 7.6539 23.4896 64 49.2878  81.727
15 8.3954 24.7402 65 50.1656  82.848
16 9.1454 25.9830 66 51.0444  83.968
17 9.9031 27.2186 67 51.9241  85.088
18 10.6679 28.4478 68 52.8047  86.206
19 11.4392 29.6709 69 53.6861  87.324
20 12.2165 30.8884 70 54.5684  88.441
21 12.9993 32.1007 71 55.4516  89.557
22 13.7873 33.3083 72 56.3356  90.672
23 14.5800 34.5113 73 57.2203  91.787
24 15.3773 35.7101 74 58.1059  92.900
25 16.1787 36.9049 75 58.9923  94.013
26 16.9841 38.0960 76 59.8794  95.125
27 17.7932  39.2836 77 60.7672  96.237
28 18.6058 40.4678 78 61.6558  97.348
29 19.4218 41.6488 79 62.5450  98.458
30 20.2409 42.8269 80 63.4350  99.567
31 21.0630 44.0020 81 64.3257 100.676
32 21.8880 45.1745 82 65.2170 101.784
33 22,7157 46.3443 83 66.1090 102.891
34 23.5460 47.5116 84 67.0017 103.998
35 24.3788 48.6765 85 67.8950 105.104
36 25.2140 49.8392 86 68.7889 106.209
37 26.0514 50.9996 87 69.6834 107.314
38 26.8911 52.1580 88 70.5786 108.418
39 27.7328 53.3143 89 71.4743 109.522
40 28.5766 54.4686 90 72.3706 110.625
41 29.4223 55.6211 91 73.2675 111.728
42 30.2699 56.7718 92 74.1650 112.830
43  31.1193 57.9207 93 75.0630 113.931
44  31.9705 59.0679 94 75.9616 115.032
45  32.8233 60.2135 95 76.8607 116.133
46 33.6778  61.358 96 77.7603 117.232
47 34.5338  62.500 97 78.6605 118.332
48 353914  63.641 98 79.5611 119.431
49 36.2505  64.781 99 80.4623 120.529




directly from the Poisson distribution when the number of observed cases is
less than 100 (see Table 1). When the number of cases is 100 or more,
the normal approximation may be used to calculate the confidence intervals.
This is

d/P + 2,/,Vd/ P (10)

where d is the number of deaths, P is the population, and z, s is the a/2-level
normal deviate (e.g. 1.96 for 95% confidence intervals).

Although the Ury-Wiggins approximation to the Poisson is more accurate
than the normal approximation, it is harder to calculate, and the difference
between the two is inconsequential when the number is cases is 100 or more.

4.5 Binomial proportions

We recommend the score interval (Vollset, 1993; Brown et al, 2001), which
is found by solving the quadratic equation:

(x_nﬁ*)Q _ 2 (11>

where n is the sample size, x is the number of successes, 2,2 is the a/2-level
normal deviate (e.g. 1.96 for 95% intervals), and p, is the confidence limit
to be estimated.

The solution of the quadratic equation is:

A

2nx + 23 o £ \/(Zn:p + 2% 9n)? — 4(n? + 22 yn)2?
Ps =

2(n? + zi/Qn)

(12)

An Excel spreadsheet for calculating these confidence limits is available here.
The spreadsheet was prepared by Alicia Thompson.

In the past, many analysts, including the authors of this document, have
recommended computing “exact” confidence intervals directly from the bi-
nomial distribution when the sample size is small. However, exact confidence
intervals tend to be conservative (too wide). Agresti and Coull (1998) have
shown that the score interval given above works better in almost all circum-
stances than exact intervals, even for the smallest sample sizes. Therefore,
we now recommend the score interval for all sample sizes.


http://www.doh.wa.gov/Portals/1/Documents/5500/ConfInt-Binomial.xls
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4.6 Multiple admissions

Sometimes we want to estimate rates and confidence intervals in situations
where the assumption of independence between events does not hold. For
example, we may want to measure hospital admission rates. For some con-
ditions, such as asthma, a few people may be hospitalized many times. The
multiple admissions for an individual person are not likely to be independent
of each other, in the sense that a person who is once hospitalized for asthma
is more likely to be hospitalized later for asthma than is a person who has
not been hospitalized for asthma. Therefore, the total count of admissions
may not follow a Poisson distribution. It is typical in such situations for the
total count to exhibit greater variability than it would have if it were Poisson
(hence the term extra-Poisson variation is often used). Because of this, if
the methods described elsewhere in this document are applied to hospital
admission rates (whether these are in the form of age-adjusted, age-specific,
or crude rates, or SMRs) they may produce confidence intervals that are too
narrow.

Several statistical methods are available for analyzing data that has extra-
Poisson variation, including generalized estimating equations (GEE) and
other quasi-likelihood models, and the bootstrap. Analysts who have the
knowledge and computer software to use those methods should do so when
appropriate.

Here we describe how to calculate confidence intervals for age-adjusted hospi-
tal admission rates. This method was described by Carriere and Roos (1994)
and by Stukel et al. (1994). In its basic principles, this method is similar to
using Multiple Admission Factors, as proposed by Cain and Diehr (1992), or
the negative binomial distribution, as described by Glynn et al (1993). We
wish to caution users that this method may not work well for small num-
bers (e.g. n < 50). We have no alternative method to recommend for small
numbers.

4.6.1 Age-adjusted rates

Notation

The notation is similar to that used in Section 4.2 on age-adjusted rates. Say
the age-adjusted rates are calculated according to the following. Multiply
the age-specific rates in the target population by the age distribution of the
standard population:

m m

R=Y"s(di/P) =" sih (13)

=1 =1
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where m is the number of age groups, d; is the number of hospitalizations in
age group ¢, P; is the population in age group i, s; is the proportion of the
standard population in age group 7, and h; is the age-specific hospitalization
rate in age group ¢.

Variance

The variance of h; is estimated by

var(hi) =3 (dji — hi)*/ Pi(P; — 1) (14)

J=1

where d;; is the number of hospital admissions for individual j in age group
7. Some algebraic manipulation can be used to rewrite this in a form that is
easier for computation:

— (S, d%) — Ph?
ity = o

(15)

In this form the summation only needs to be performed over the people in
the population who have at least one hospital admission, since dj; = 0 for
people who are not hospitalized, and they make no contribution to the sum.

Then the variance of the age-adjusted hospital admission rate is estimated

by:

m P 12 2
T 9 (ijl dji) — P;h;
var(R) = E_ S; PP —1) (16)

Confidence intervals

Finally, confidence intervals can be calculated with the usual normal approx-

imation method as:
R+ 2,9\ var(R) (17)

where z,/5 is the a/2-level normal deviate (e.g. 1.96 for 95% confidence
intervals).

4.6.2 Crude and age-specific rates

For crude or age-specific rates, the rate is given by
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R=d/P (18)

where d is the number of hospitalizations and P is the population.

Then the variance of the rate is given by

— P d?)—d?/P
var(R) = (2 ]) /

P(P—1)

(19)

where d; is the number of hospital admissions for individual j. The sum-
mation only needs to be performed over the people in the population who
have at least one hospital admission, since d; = 0 for people who are not
hospitalized, and they make no contribution to the sum.

Then confidence limits may be obtained with the normal theory method, as
in equation 17.

4.6.3 SMRs

Confidence intervals for SMRs may be derived in a way similar to that used
for age-adjusted rates (see papers by Carriere and Roos (1994) and Stukel et
al (1994)).

4.7 Complex survey sample designs

Surveys with complex sample designs are surveys which include one or more
of these features: stratification, clustering of observations, or unequal weight-
ing of observations. Computation of confidence intervals from complex survey
samples must account for the design effect of the survey. Depending on the
sampling design, this may require the use of software designed to analyze
data from complex survey samples, such as SUDAAN, STATA, or the new
survey analysis modules in SAS version 8.
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