Additional Reportable Diseases
(includes: Amebic meningitis, Baylisascariosis, Chagas disease, Echinococcosis, Histoplasmosis, Smallpox, Taeniasis or Cysticercosis, Typhus, Vancomycin-resistant Staphylococcus aureus)

1. DISEASE REPORTING

A. Purpose of Reporting and Surveillance

1. To understand the epidemiology of emerging diseases in Washington State residents and to inform public health and health care organizations about conditions that have been diagnosed in residents.

2. To assist in the diagnosis and treatment of cases.

3. If applicable, to identify potentially exposed close contacts, health care workers, and laboratory personnel and to provide counseling.

4. To identify sources of transmission and to prevent further transmission.

B. Legal Reporting Requirements

1. Health care providers and Health care facilities: amebic meningitis or smallpox immediately notifiable to local health jurisdiction; baylisascariosis or vancomycin-resistant Staphylococcus aureus notifiable to local health jurisdiction within 24 hours; Chagas disease, cysticercosis, echinococcosis, histoplasmosis, taeniasis or typhus notifiable to local health jurisdiction within 3 business days.

2. Laboratories: amebic meningitis or smallpox immediately notifiable to the local health jurisdiction, submission required – specimen associated with positive result, if available, 2 business days; Baylisascaris or vancomycin-resistant Staphylococcus aureus notifiable to local health jurisdiction within 24 hours, submission required – specimen associated with positive result, if available, 2 business days; Echinococcus granulosus or E. multilocularis, Rickettsia typhi, Taenia solium, or Trypanosoma cruzi notifiable to local health jurisdiction within 2 business days, submission required – isolate within 2 business days; Histoplasma capsulatum notifiable to local health jurisdiction within 2 business days, submission required – isolate within 2 business days, submission on request – serum with positive result within 2 business days

4. Local health jurisdictions: amebic meningitis or smallpox immediately notifiable to the Washington State Department of Health (DOH) Office of Communicable Disease Epidemiology (CDE) at 206-418-5500 or 877-539-4344.
C. Local Health Jurisdiction Investigation Responsibilities

1. Responsibilities are dependent on the disease under investigation. Report any immediately notifiable condition to CDE.

2. Report any case to CDE through the Washington Disease Reporting System (WDRS) as a Rare Disease, including entering the specific disease in the Clinical and Laboratory tab.

2. THE DISEASES AND THEIR EPIDEMIOLOGY

This guideline covers notifiable conditions that may have exposures within or outside of Washington. According to the 2023 revision of Washington Administrative Code (WAC) 246-101, the conditions are included in the WAC’s individual tables for health care providers, health care facilities, laboratories or veterinarians. Conditions that should be reported by local health jurisdictions to the Office of Communicable Disease Epidemiology (CDE) and entered in WDRS as Rare Diseases include:

- Amebic meningitis *(Acanthamoeba, Balamuthia, Naegleria)*
- Baylisascariasis*
- Chagas disease*
- Cysticercosis*
- Echinococcosis
- Histoplasmosis*
- Smallpox
- Taeniasis
- Typhus*
- Vancomycin-resistant *Staphylococcus aureus* (enter in WDRS under Highly Antibiotic Resistant Organism)

* Condition not generally considered to be endemic to the state recently identified in a Washington resident

+ Two locally acquired *Baylisascaris* infections have been reported—one in 2017 and one in 2022

Additional conditions investigated by local health jurisdictions can be entered under Rare Disease code in WDRS to document workload if desired. The Washington State Annual Communicable Disease Report has a summary of notifiable condition cases.

3. CASE DEFINITIONS

National cases definitions are available for: free-living amebae infections, histoplasmosis, smallpox, and varicella-associated death can be found at: https://ndc.services.cdc.gov/.

Additional case definitions may have been developed by Office of Communicable Disease Epidemiology.

4. DIAGNOSIS AND LABORATORY SERVICES

Appropriate diagnostic testing depends on the suspected agent. Commercial laboratory tests may be unreliable for many of these diseases so confirmation by a reference laboratory may be appropriate. See Section 6 for brief reviews of diagnostic testing for selected conditions. Consult with Office of Communicable Disease Epidemiology (CDE) for assistance with interpreting results, diagnosis and testing (206-418-5500).
Note that Washington State Public Health Laboratories (PHL) require all clinical specimens have two patient identifiers, a name and a second identifier (e.g., date of birth) both on the specimen label and on the submission form. Due to laboratory accreditation standards, specimens will be rejected for testing if not properly identified. Also include specimen source and collection date.

The PHL Microbiology Test Menu lists specific agents by scientific name, (i.e., genus) and includes appropriate shipping temperatures and applicable PHL form:
https://www.doh.wa.gov/ForPublicHealthandHealthcareProviders/PublicHealthLaborator ies/MicrobiologyLabTestMenu

Microbiology, Molecular diagnosis/PCR, and Parasitology form:
https://www.medialab.com/dv/dl.aspx?d=1887088&dh=52b1a&u=69790&uh=0e2a1

Serology/Virology form:
https://www.medialab.com/dv/dl.aspx?d=1615463&dh=e4b87&u=69790&uh=0e2a1

Bioterrorism form (includes botulism, Ebola, MERS, plague, and COVID-19):
https://doh.wa.gov/sites/default/files/legacy/Documents/5230/302-018-BioterrorismSpecimen.pdf?uid=63ac5a30e71ea

Biothreat Environmental Chain of Custody form:
https://doh.wa.gov/sites/default/files/legacy/Documents/Pubs/302-019-PHLBiothreatEnvironmentalSampleSubmissionChainOfCustody.pdf?uid=63ac5a30e76fb

5. ROUTINE CASE INVESTIGATION

The case investigation depends on the suspected agent, its mode of transmission, and its communicability. In general, evaluate the diagnosis for a reported case including obtaining copies of prior laboratory reports. To arrange confirmatory testing call Office of Communicable Disease Epidemiology (CDE) (206-418-5500). Determine if others are at risk, either by sharing the case’s exposure or by being exposed to a case. See Section 6 for brief descriptions of investigations for selected conditions. Consult with CDE for assistance with performing a public health investigation for other agents. The Reportable Disease reporting form is available at: https://doh.wa.gov/sites/default/files/2022-12/210-067-ReportFormReportableDiseases.pdf?uid=63add03b5d9ce

Infection control measures depend on the suspected agent (see Section 6). Health care settings should institute airborne precautions for suspected smallpox. Consult with CDE if needed.

6. MANAGING SPECIFIC DISEASES

Notifiable conditions briefly described below should be reported to Office of Communicable Disease Epidemiology (CDE). Conditions with a national case definition have year of last revision of the case definition: https://ndc.services.cdc.gov/. Testing availability at Department of Health (DOH) or CDC is indicated. Vancomycin-resistant Staphylococcus aureus is reported in WDRS as Highly Antibiotic-Resistant Organisms.

A. Amebic Meningitis (Naegleria fowleri, Balamuthia mandrillaris, Acanthamoeba spp.)

1. Disease and its epidemiology:
 - Agents and conditions: *Naegleria fowleri* – Primary amebic meningoencephalitis
Illness: meningoencephalitis – acute onset of severe headache, fever, vomiting followed by stiff neck, confusion, seizures, hallucinations that is usually fatal within 3-7 days; granulomatous disease – progressive lesions, rhinitis, pneumonitis

Incubation period: 1-14 days

Differential diagnosis: cryptococcosis, cysticercosis, bacterial meningitis, viral meningitis, intracranial hemorrhage, connective tissue disease, malignancy, rabies, taeniasis, toxoplasmosis, tuberculosis

Reservoir:

i. *Naegleria fowleri* and *Acanthamoeba* spp. Found worldwide in warm freshwater (lakes, rivers, and hot springs); contaminated tap water; poorly maintained swimming pools, water parks and splash pads; and soil. In this country mainly but not entirely southern tier states; recent Midwest cases.

ii. *Balamuthia mandrillaris*: Found worldwide in dust and soil (thought to be primary source of infection) and also found in fresh water. Cases of *Balamuthia* infection in 2017 and 2022 had in-state exposures.

Transmission

i. *Naegleria fowleri* and *Acanthamoeba* spp: Exposure via contaminated water entering the nose by swimming, diving, facial submersion, sinus irrigation (e.g., neti pot) with passage via olfactory nerve to the brain and meninges

ii. *Balamuthia mandrillaris*: Exposure via break in the skin or inhalation of dust containing *Balamuthia*, exposure to fresh water containing *Balamuthia* is possible

Communicability: none; *Balamuthia* has been transmitted by organ transplant

Treatment of severe infections with antiparasitic agents; poor success. Provider can consult CDC 24/7 (404-718-4745 or 770-488-7100) about diagnosis and treatment including miltefosine.

 Confirmed: Presentation of meningoencephalitis or encephalitis with laboratory confirmation (detection of *Naegleria fowleri*, *Balamuthia mandrillaris* or *Acanthamoeba* antigen, nucleic acid, or organism from a clinical specimen via direct fluorescent antibody, PCR, or microscopy, respectively.)

3. Diagnosis and laboratory services: CDE can arrange testing at CDC. Submit CSF, biopsy, or tissue specimens with microbiology/parasitology form (see Section 4). CDC is developing a genotyping system for *Balamuthia* and their preferred sample is
fresh/frozen brain tissue (0.5 to 1.0 g) that has not been preserved with formalin. If CSF (0.5 to 1.0 mL) is available, they can receive that as well.

4. Routine case investigation: identify recent freshwater activities, use of undertreated pools, use of nasal irrigation systems, non-sterile cleaning of contact lenses

5. Controlling further spread: address water source

6. Routine prevention: consider nasal clips during swimming; use sterile water in nasal irrigation systems (neti pots) and for cleaning contact lenses

7. Resources: https://www.cdc.gov/parasites/naegleria/
 https://www.cdc.gov/parasites/acanthamoeba/
 https://www.cdc.gov/parasites/balamuthia
 https://www.cdc.gov/parasites/health_professionals.html (for providers)

B. Baylisascariasis

1. Disease and its epidemiology:
 - Agent is roundworm *Baylisascaris* primarily *B. procyonis* (raccoons; United States, Europe, and Japan)
 - Illness: varies with dose and where in the body the larvae migrate; invasion of the liver may cause nausea, tiredness, hepatomegaly; spinal cord infection can result in loss of muscle control; neural larvae migrans (cerebral infection) can result in encephalitis; or eye involvement can cause sensitivity to light, inflammation of the eye, and lead to blindness. Consider baylisascariasis in cases of eosinophilic meningitis, particularly among young children and persons with developmental delays.
 - Incubation period: 1 – 4 weeks
 - Differential diagnosis: varies with symptoms; consider other nematode infections (e.g., ascariasis, trichuriasis, hookworm, enterobiasis, strongyloidiasis, filariasis, trichinosis, dirofilariasis, or angiostrongyliasis)
 - Reservoir in Washington is raccoons; eggs develop to maturity in the raccoon’s intestine, where adults produce millions of eggs that are passed in the feces. Freshly excreted eggs passed in raccoon feces are not immediately infectious; they take 2-4 weeks in the environment to embryonate and become infectious. The eggs are resistant to most environmental conditions and can survive for years. Dogs can be hosts for *Baylisascaris* and can pass eggs in feces either from infection or through ingestion and passage.
 - Transmission: through ingesting contaminated soil, water, feces, or objects
 - Communicability: none
 - Treatment

 In cases where suspicion of exposure is high, immediate treatment with albendazole (25-50 mg/kg per day by mouth for 10 – 20 days) may be appropriate. Treatment is successful when administered soon after exposure to abort the migration of larvae.
Indications for immediate treatment may include known or suspected oral exposure to raccoon feces. Treatment should be initiated as soon as possible after ingestion of infectious material, ideally within three days. If albendazole is not immediately available, mebendazole or ivermectin may be used in the interim.

For clinical baylisascariasis, treatment with albendazole, at the dose given above, with concurrent corticosteroids to help reduce the inflammatory reaction is indicated to attempt to control the disease.

2. Case definition
 a. **Confirmed:** No CDC definition – consult with CDE for suspected case

3. Diagnosis and laboratory services:

 Diagnosis can be difficult; diagnostic findings include eosinophilic pleocytosis, peripheral eosinophilia, abnormalities on MRI, and positive *Baylisascaris* antibody titers on serologic testing of CSF and serum. Neuroimaging and encephalography may assist with identifying neural larva migrans. Ocular examinations may reveal a migrating larva, larval tracks, or lesions consistent with presence of a nematode larva in the eye. CDE can arrange testing at CDC or request case consultation from CDC including review of imaging. Submit serum, CSF, biopsy, or tissue specimens with microbiology/parasitology form (see Section 4). Serological testing for other nematode infections should be considered and may help to diagnose other causes of larva migrans if *Baylisascaris* serology is negative. Testing animal feces for the presence of *Baylisascaris* eggs can be coordinated through a veterinary diagnostic laboratory.

4. Routine case investigation: determine any potential exposure to raccoon feces, particularly in a play area for children or a work area for adults, and identify any others sharing that exposure

5. Controlling further spread: any identified animal feces in the suspected exposure area or raccoon latrines should be removed and burned, buried, or sent to a landfill. Most chemicals do not kill roundworm eggs; however, heat kills the eggs instantly and boiling water or a blowtorch can be used for clean-up.

6. Routine prevention: avoid contact with raccoon and their feces, particularly raccoon dens or latrines. Recommend prophylactic albendazole for confirmed oral exposure to raccoon feces. Promptly remove any feces identified while using appropriate precautions. Outside surfaces such as decks or patios can be treated with boiling water or a propane torch.

 Discourage raccoons from living in and around the home by preventing access to food, keeping trash containers tightly closed, closing off access to attics and basements, covering sandboxes when not in use, eliminating water sources, removing bird feeders, and clearing brush.

7. **Resources:** https://www.cdc.gov/parasites/baylisascaris/

C. Chagas disease (American trypanosomiasis)

1. Disease and its epidemiology:
 - Agent is protozoan parasite *Trypanosoma cruzi*
• The severity and course of infection varies based on age at infection, transmission route, and strain. There are two phases of disease, acute and chronic. Acute phase may be asymptomatic or involve weeks to months of fever, rash, headache, body aches, eyelid swelling, loss of appetite, diarrhea, and vomiting. Hepatomegaly, splenomegaly, lymphadenopathy, or chagoma (swelling at the site of the bite) may be present. If a person is not treated with antiparasitic medication, the infection persists and enters the chronic phase. Chronic phase is lifelong in the absence of treatment and is usually asymptomatic (indeterminate form); 20-30% of infected people may develop symptoms (determinate form) years to decades after the acute infection. The two major determinate forms of Chagas disease are:

 o Chagas cardiomyopathy and/or gastrointestinal Chagas disease. Chagas cardiomyopathy is the most common clinical manifestation, which results from a chronic inflammatory process that damages the conduction system. Early signs include conduction system abnormalities, segmental left ventricular wall motion abnormalities; later manifestations may include tachycardia, bradycardia, high degree atrioventricular blocks, apical aneurysm, and congestive heart failure. Chagas cardiomyopathy is more common in men.

 o Gastrointestinal Chagas disease affects the esophagus or colon and presents with dysphagia, weight loss, aspiration, regurgitation, prolonged constipation, or abdominal pain. Gastrointestinal Chagas disease is thought to be caused by T. cruzi genotypes that predominate in South America.

Patients diagnosed in the United States will usually be in the chronic phase of the disease, although reactivation disease can occur when a chronically infected patient becomes immunosuppressed. Positive serology at blood donation typically reflects prior asymptomatic infection. Illness is more severe in immunocompromised persons or in younger children; <5% die from myocarditis or meningoencephalitis.

• Incubation period: 5-14 days for bug bite; transfusion- and transplant-associated cases may have a longer incubation period, up to 120 days

• Differential diagnosis varies with presentation: acute (leishmaniasis, malaria, meningitis), cardiac (angina/infarct, arrhythmias, dilated cardiomyopathy), intestinal (acute or chronic megacolon, esophageal abnormality, obstruction)

• Reservoir is humans, dogs, rabbits, guinea pigs, swine, rodents, and other animals, primarily in Mexico, Central America, and South America, rarely in the United States though reservoirs and vectors occur in some southern and southwestern states. Cases reported in Washington generally had exposures in Central or South America.

• Transmission: mainly through triatomine bug (reduviid or “kissing” bugs) feces contaminating the bug bite, broken skin, or mucous membrane (eye), less commonly by food containing bug feces, congenital infection, blood transfusion, organ transplant, or laboratory exposure. In the United States, maternal-to-infant transmission rate of T. cruzi is 1-5%. If left untreated, 20-40% of infected infants will later develop cardiac manifestations.

• Communicability only congenitally or through blood transfusion or organ transplant
• Treatment for acute infection, congenital infection, reactivated infections, pediatric chronic infections, and chronic infection in adults up to 50 years old without advanced cardiomyopathy. For adults >50 years with chronic infection, the decision to treat should be individualized. Treatment is with antiparasitic medications (nifurtimox and benznidazole) combined with appropriate medical management of chronic complications. CDC is available for treatment consultations.

2. Case definition

Confirmed: Acute: parasites seen (thick or thin smears) or PCR; Chronic: clinical assessment and at least two modalities of serological tests (e.g., ELISA and IFA)

3. Diagnosis and laboratory services: If no exposure risks but a screening test returns positive, retest commercially. Blood donor screening tests are not appropriate for clinical diagnostic purposes and additional testing is indicated. Acute infections can be diagnosed by microscopy or PCR; PCR can also be used to monitor after known accidental or iatrogenic exposure, or to test for reactivation. Chronic infections are diagnosed through serologic testing; a single test is not sufficiently sensitive and specific to make the diagnosis, so the standard approach applies two or more different test types (such as ELISA and IFA). If risk factors, CDE can arrange testing at CDC https://www.cdc.gov/laboratory/specimen-submission/ Submit serum with the appropriate virology-serology form (see Section 4).

4. Routine case investigation: Refer chronic case for examination and EKG. Identify travel exposures including blood transfusions in endemic areas, bug bites, and exposure to bug habitats with emphasis on possible U.S.-acquired infection. Identify and test all blood donors or recipients associated with a case, as well as persons with possible shared exposure (e.g. family members). If the patient has had children since their possible exposure, testing is recommended for offspring regardless of current age.

5. Controlling further spread: No isolation or restrictions apply. Early detection and treatment of new cases, including congenital cases. Defer donating blood if ever diagnosed with Chagas. Educate those sharing case’s exposure about Chagas, as well as any children potentially born after infection in birth parent occurred.

6. Routine prevention: in risk area use bed nets, protective clothing, and insect repellents. In the US, blood donations and organ donors are screened for Chagas. Screening of at-risk women during pregnancy can identify maternal infection and allow early assessment and treatment for congenital T. cruzi infection. Individuals who were born or resided for >6 months in areas of Mexico, Central and South America endemic for Chagas disease should be tested for T. cruzi infection, and family members of people testing positive who shared exposure should be screened.

Chagas Biovigilance Network – https://www.aabb.org/research/hemovigilance/Pages/chagas.aspx
Recommendations for Screening and Diagnosis of Chagas Disease in the United States - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9071346/
Evaluation and Treatment of Chagas Disease in the United States -
D. Echinococcosis

1. Disease and its epidemiology:
 - Agent is one of several species of *Echinococcus*, *E. granulosus* (cystic echinococcosis or hydatid disease), *E. multilocularis* (alveolar echinococcosis), *E. vogeli* (polycystic form of neotropical echinococcosis) and *E. oligarthrus* (unicystic form of neotropical echinococcosis). Life cycle is complex with intermediate and definitive hosts of different species.
 - Illness: varies with infecting species and organ involved. Cystic echinococcosis causes slowly enlarging cysts. Liver and lung are most commonly involved, but cysts can occur in the spleen, kidneys, heart, bone, brain or eyes. Rupture of a cyst can cause anaphylaxis as well as dissemination. Alveolar echinococcosis causes parasitic tumors in the liver, lungs, brain, and other organs.
 - Incubation period: asymptomatic until cysts are large enough to affect an organ.
 - Differential diagnosis: amoebic or bacterial abscess, fungal infection, malignancy
 - Transmission: accidental consumption of water, food, or soil contaminated by feces of an infected dog or other canid; cysts in soil are environmentally stable and can survive freezing conditions. Dogs and other canids generally become infected through consumption of infected livestock carcasses (commonly sheep) or wild rodents, and shed infectious eggs in their stool. Direct contact with infected dogs may lead to infection. Reservoir is wild and domestic canids, ungulates, and camels for *E. granulosus*, foxes, other canids and rodents for *E. multilocularis*, canids and rodents for *E. vogeli*, and wild felids, rodents and lagomorphs for *E. oligarthrus*.
 - Communicability: none
 - Treatment: surgery for cystic disease, with 1-6 months of antiparasitic therapy (benzimidazole such as albendazole), cyst puncture, and PAIR (percutaneous aspiration, injection of chemicals and reaspiration) as other options; two years of chemotherapy for alveolar disease but sometimes requiring radical surgery.

2. Case definition
 - **Confirmed**: No CDC definition – consult with CDE for suspected case

3. Diagnosis and laboratory services: The presence of a cyst-like mass in a person with a history of exposure to sheepdogs in an area where *E. granulosus* is endemic suggests a diagnosis of cystic echinococcosis. Imaging techniques, such as CT scans, ultrasonography, and MRIs, are used to detect cysts. After a cyst has been detected, serologic tests may be used to confirm the diagnosis. CDE can arrange testing at CDC or request case consultation from CDC including review of imaging. Submit serum with serology form (see Section 4).

4. Routine case investigation: determine any potential exposure to likely host animals,
particularly in a play area for children or a work area for adults, and identify any others sharing that exposure

5. Controlling further spread: identify animal sources and prevent additional exposures

6. Routine prevention: prevent dog infections – do not allow dogs access to home slaughter or livestock carcasses, consult a veterinarian about preventive treatments; wash hands after handling dogs and before handling food, particularly in areas with endemic disease. Wash garden and wild-foraged produce prior to consumption.

7. Resources: https://www.cdc.gov/parasites/echinococciosis/

E. Histoplasmosis

1. Disease and its epidemiology:
 - Agent is *Histoplasma capsulatum*, an environmental fungus found in soil that contains large amounts of bird of bat droppings.
 - The majority of infections are asymptomatic. Illness may range from self-limited respiratory disease to disseminated infection. Symptoms of acute pulmonary histoplasmosis generally include fever, malaise, headache, cough, chest pain, and myalgias. Disseminated disease can occur in immunocompromised persons.
 - Incubation is generally 3-17 days
 - Differential diagnosis includes other fungal pneumonias, bacterial pneumonia, *Legionella*, *Mycoplasma* infections, pneumococcal infections, tuberculosis, cancer, viral pneumonia
 - Transmission: generally through inhalation of spores from the air, often during activities that disturb the soil. Endemic areas include central and eastern United States, parts of Central and South America, Africa, Asia, and Australia. Cases have been reported in Washington in the absence of a travel history. Animals can also be infected, but animal-human transmission has not been documented.
 - Communicability: none except rare organ transplant from infected donor
 - Most infections self-resolve; treatment with antifungals is indicated for moderate to severe acute pulmonary, chronic pulmonary, disseminated, and CNS histoplasmosis

2. Case definition: (2017)

 Clinical presentation includes at least two of the following: fever, chest pain, cough, myalgia, shortness of breath, headache, or erythema nodosum/erythema multiforme rash OR at least one of the following: abnormal chest imaging; gastrointestinal ulcerations or masses, skin or mucosal lesions; peripheral lymphadenopathy; pancytopenia; enlargement of the liver, spleen, or abdominal lymph nodes; meningitis, encephalitis, or focal brain lesion(s)

 Confirmed: A clinically compatible case with evidence of *H. capsulatum* by any of: culture, histopathology, ≥4-fold rise in complement fixation (CF) antibody titers taken at least 2 weeks apart, detection of H band by immunodiffusion, documented seroconversion by detection of M band by immunodiffusion, or nucleic acid detection.
Probable: A clinically compatible case with identification of *H. capsulatum* by any of: cytopathology, serum or CSF CF titer 1:32 or greater, detection of M band without a previously negative test, or antigen detection, OR a case that meets confirmatory laboratory criteria, but no clinical information is available, OR a clinically-compatible case that does not meet laboratory criteria but is epi-linked to a confirmed case (e.g. common environmental exposure).

3. Diagnosis and laboratory services: Commercial testing is available; CDE can arrange testing at CDC. Submit serum, CSF or fungal isolate with appropriate virology/serology or microbiology forms (see Section 4).

4. Routine case investigation: ask about travel to endemic area or potential exposure to soil, bird feces or bat feces. If endemic exposure is possible, ask detailed location information.

5. Controlling further spread: Educate those sharing a case’s exposure about signs and symptoms of histoplasmosis

6. Routine prevention: Large amounts of bird or bat droppings should be cleaned up by professional companies that specialize in the removal of hazardous waste

7. Resources: https://www.cdc.gov/fungal/diseases/histoplasmosis/

F. Smallpox

1. Disease and its epidemiology:
 - Agent is variola virus, considered extinct in nature; potential agent of bioterrorism
 - Illness begins as febrile flu-like illness followed by rash progressing through stages of macules, papules, vesicles, pustules, and scabs; rash at same stage of development on a body area; no naturally-occurring cases worldwide since 1977
 - Incubation period: 7-19 days
 - Differential diagnosis: chickenpox/shingles, mpox, vaccinia (smallpox vaccine), measles, coxsackievirus , scabies, drug allergy, impetigo, insect bites, mox, rubella, molluscum contagiosum, mononucleosis, scarlet fever, syphilis, erythema toxicum
 - Reservoir was humans, now only laboratory specimens exist
 - Transmission: respiratory droplets and fomites or through deliberate release of weaponized material; scabs contain virus and are infectious even when dried
 - Communicability is high through respiratory secretions while lesions are present
 - Treatment is supportive; antivirals may be considered

 Suspect: case with fever followed in 1-4 days by generalized acute vesicular or pustular rash

 Probable: case with acute onset of fever ≥101º F (≥38.3º C) followed by a rash characterized by firm, deep seated vesicles or pustules in the same stage of development without other apparent cause OR clinically consistent case with epi link to a confirmed case
Confirmed: laboratory confirmed case (PCR or virus isolation) OR case with acute onset of fever $\geq 101^\circ$ F ($\geq 38.3^\circ$ C) followed by a rash characterized by firm, deep seated vesicles or pustules in the same stage of development on a body area without other apparent cause with epi link to a laboratory-confirmed case

3. Diagnosis and laboratory services: CDE can arrange testing; submit vesicle, scab, skin, and serum specimens (consult CDE first about specimens and use of protective equipment by health care providers) with virology/serology form by virology/serology form (Section 4).

4. Routine case investigation: notify CDE immediately for suspected or confirmed case; evaluate the diagnosis particularly if lesions are deep-seated firm well-circumscribed vesicles or pustules at same stage of development and mpox and vaccinia have been ruled out. Recommend appropriate health care personal protective equipment. Submit with the bioterrorism form (Section 4): 10 ml serum; three lesions (skin top layer, glass slide touched to scraping of lesion base, EM grid or swab touched to base of open lesion); scabs; full thickness skin punch-biopsies.

5. Controlling further spread: strict contact and airborne precautions in health care setting; strict isolation at home; consider quarantine for exposed persons including travel contacts

6. Routine prevention: no routine vaccination

G. Taeniasis/Cysticercosis

1. Disease and its epidemiology:

 - Agent is species of *Taenia* parasites including *T. saginata* (beef tapeworm), *T. solium* (pork tapeworm) and *T. asiatica* (Asian tapeworm) which have complex life cycles involving cysts in muscle tissue and eggs in feces. Taeniasis is caused by ingestion of cysts leading to tapeworm infection. Cysticercosis is caused by ingestion of eggs.

 - Illness: Taeniasis most commonly results in no symptoms or mild symptoms. Symptoms due to intestinal tapeworms include abdominal pain, loss of appetite, or weight loss which may be more pronounced for the larger *T. saginata* (to several meters in length). Infection with *T. solium* eggs passed from a person with taeniasis can result in cysticercosis including involvement of various organs (eye, heart, skin, muscles) or neurocysticercoses resulting in seizures, confusion, loss of balance, chronic meningitis, hydrocephalus, or death. Epilepsy is the most common presentation of neurocysticercoses. *T. asiatica* may affect the liver.

 - Incubation period: adult tapeworms develop within 2 months of ingestion and can survive for up to 5 years. Cysticercosis develops over a period of months to years after infection when degenerating cysts cause an inflammatory response and resulting swelling.

 - Differential diagnosis: varies with symptoms; can include other parasitic intestinal infections, brain abscess, tuberculosis, neurosarcoidosis, malignancy

 - Reservoir is cattle for *T. saginata*, pigs and swine for *T. solium*, and pigs and swine for *T. asiatica*; a particular risk for pigs or swine as the source is their opportunity to consume human feces
• Transmission: ingesting contaminated food, soil, water or objects; tapeworm infection results from consuming food (commonly raw or undercooked contaminated beef or pork) containing cysts while neurocysticercosis results from ingesting tapeworm eggs; *T. solium* eggs in human feces of a tapeworm carrier can cause infection in a person (including repeat autoinfection).

• Communicability: A person with taeniasis caused by *T. solium* passes infectious eggs in their stool; ingestion of these eggs can cause cysticercosis.

• Treatment: praziquantel or alternative niclosamide for taeniasis. For cysticercosis, the most urgent therapeutic interventions are aimed at managing the neurological complications, and may require anticonvulsant therapy, corticosteroids, neurosurgical intervention and/or treatment of increased intracranial pressure. Anthelminthic treatment may be indicated, but must be administered with caution, because larval death provokes an inflammatory response that may increase symptoms. Concomitant steroids are usually indicated.

2. Case definition
 a. **Confirmed:** No CDC definition – consult with CDE for suspected case

3. Diagnosis and laboratory services: serologic testing and neuroimaging for cysticercosis are available commercially. If needed, CDE can arrange testing at CDC. Submit serum with virology/serology form (see Section 4). Taeniasis is confirmed through identification of Taenia eggs, proglottids, or scolex in a fecal or pathological specimen. *T. saginata* and *T. asiatica* can be difficult to distinguish.

4. Routine case investigation: Taeniasis: determine unusual meat consumption, particularly wild game from a commercial source or meals during international residence or travel and identify any others sharing that exposure. Cysticercosis: infected person should be tested for taeniasis; family members should also be tested depending on exposure history.

5. Controlling further spread: Prevent fecal-oral transmission of *Taenia* eggs from the feces of an infected patient to avoid cysticercosis. Infected persons should adhere to good hygiene practices and not prepare food for others until infection is cleared. Food handlers should stop work and persons who work with animals should avoid contact with cattle and pigs until infection is cleared (two negative fecal specimens collected on different days following treatment). The patient and household contacts should be screened for cysticercosis if taeniasis is confirmed.

6. Routine prevention: thoroughly cook beef and pork; avoid contact with cattle or pig feces in affected regions, practice good hand hygiene

7. **Resources:** https://www.cdc.gov/parasites/cysticercosis/

H. Typhus

1. Diseases and their epidemiology:
 • Agents are *Rickettsia typhi* or *R. felis* (flea-borne: endemic or murine typhus) and *R. prowazekii* (louse-borne: epidemic typhus). Flea-borne typhus occurs in tropical and subtropical climates, including southern California, Hawaii, and Texas. Reservoirs for flea-borne are rats (reported from tropics and subtropics), reservoirs for louse-borne
are humans (Andes region of South America, Burundi, Ethiopia) and rarely flying squirrels in eastern United States.

- Illness is febrile rash illness for louse-borne with case fatality rate up to 40% if untreated; milder illness for flea-borne. Common symptoms can include fever, myalgias, rash, cough, nausea, and vomiting.
- Incubation period 7 to 14 days.
- Differential diagnosis: ehrlichiosis/anaplasmosis, mononucleosis, leptospirosis, spotted fever rickettsiosis, syphilis, tularemia, typhoid
- Transmission: infected flea or louse feces entering a wound; fleas and lice typically defecate while feeding. Contaminated dust can also be inhaled or contaminate mucous membranes.
- Communicability for louse-borne is through human body lice.
- Treatment is with doxycycline for both; for louse-borne also use a pediculicide.

2. Case definition

 Probable: Clinically compatible illness with single IgM or IgG antibody titer

 Confirmed: Clinically compatible illness with confirmatory laboratory including fourfold antibody rise, PCR positive, or positive immunohistochemical stain

3. Diagnosis and laboratory services: CDE can arrange testing at CDC. Submit serum and tissue samples with appropriate virology/serology or microbiology forms (Section 4).

4. Routine case investigation: notify CDE immediately for suspected or confirmed case; obtain appropriate specimens as soon as possible for testing. Assess exposure history; infections acquired in the United States will be reported by CDE to the state where exposure was likely. Suspicion of exposure in Washington should lead to a thorough environmental investigation.

5. Controlling further spread: delouse a lice-infested patient, educate those sharing a case’s exposure about signs and symptoms of typhus.

6. Routine prevention: keep rodents away from human habitation. Prevent pets from getting fleas by using a veterinarian-approved flea control product. Prevent flea bites by avoiding stray or wild animals, wearing gloves when handling sick or dead animals, and using EPA-registered insect repellents when spending time outside.

1. **Vancomycin-resistant Staphylococcus aureus**

 1. Disease and its epidemiology:

 - Agent: *S. aureus* with resistance to vancomycin (MIC > 8 ug/mL per Clinical Laboratory Standards Institute (CLSI) M100-Ed32 interpretive criteria). VRSA was first identified in 2002 and as of 2020, only 14 isolates have been reported in the United States and 52 worldwide. Vancomycin Resistant *Staphylococcus aureus*
(VRSA) is on the continuum of resistance of *S. aureus* from pan sensitive, to methicillin resistant *S. aureus* (MRSA) to vancomycin intermediate *S. aureus* (VISA), to VRSA. VISA is a result of the gradual mutation accumulation of the VISA-associated genes which may occur associated with long term antibiotic therapy, whereas VRSA arises by transfer of van genes, usually from vancomycin-resistant *Enterococcus*.

- **Illness:** symptoms depend on location of infection, common sites include skin, lungs, or blood. Patients can also be colonized and have no symptoms.
- **Incubation period:** Since patients can be colonized, incubation period is not well-defined
- **Differential diagnosis:** none
- **Transmission:** *S. aureus* can be transmitted between close contacts in the community, and to patients in health care settings via contaminated health care workers hands, surfaces, or equipment
- **Communicability:** *S. aureus* is communicable through close contact with an infected or colonized individual or their body fluids, and from contaminated surfaces or objects. Based on rarity of cases identified globally, range of potential communicability is not fully defined.
- **Treatment:** consult with infectious disease specialist for treatment guidance.

2. **Case definition (2007)**
 - *Suspect:* MIC > 8 ug/mL
 - *Confirmed:* MIC ≥ 16 ug/mL

3. **Diagnosis and laboratory services:** Submit isolate associated with suspect or confirmed cases for confirmatory antimicrobial susceptibility testing. Use the PHL https://www.medialab.com/dv/dl.aspx?d=1887088&dh=52b1a&u=69790&uh=0e2a1

4. **Routine case investigation:** Request confirmatory antimicrobial susceptibility testing at PHL. If case is confirmed, ensure contact precautions in health care settings, identify close contacts, including household and health care, for possible screening. Report in WDRS under Highly Antibiotic Resistant Organisms (HARO).

5. **Controlling further spread:** Ensure case is on Contact Precautions in health care settings. Encourage hand hygiene and cleaning and disinfection of shared equipment.

6. **Routine prevention:** Hand hygiene, respiratory etiquette, keep swounds clean and covered, do not share personal items.

7. **Resources:**
 - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7015472/
7. ROUTINE PREVENTION

Routine prevention measures depend on the suspected agent. See Section 6 for comments about selected conditions. Consult with Communicable Disease Epidemiology for any other conditions (206-418-5500).

ACKNOWLEDGEMENTS

This document is a revision of the Washington State Guidelines for Notifiable Condition Reporting and Surveillance published in 2002 which were originally based on the Control of Communicable Diseases Manual (CCDM), 17th Edition; James Chin, Ed. APHA 2000. We would like to acknowledge the Oregon Department of Human Services for developing the format of this document.

UPDATES

September 2008: The definition of “rare diseases of public health significance” was made consistent with the definition provided in WAC 246-101-010.

January 2011: Section for Specific Diseases including expanded descriptions of certain rare diseases is included. Reporting requirements were revised to reflect the 2011 Notifiable Conditions Rule revision.

January 2014: Section 2 shortened, minor wording changes elsewhere.

December 2014: Viral hemorrhagic fever was removed from this guideline and a full guideline was created.

March 2015: Coccidioides was removed from this guideline and a full guideline for Coccidioidomycosis was created.

August 2015: Carbapenem Resistant Enterobacteriaceae was removed from this guideline and a full guideline was created.

April 2016: Vancomycin-resistant *Staphylococcus aureus* was moved to a separate guideline and amebic meningitis was added.

February 2017: 2016 CSTE case definition was added for amebic meningitis; Histoplasmosis added

March 2018: Update for WDRS. Added leishmaniasis and ricin poisoning. Removed conditions that will have separate guidelines (Burkholderia, ehrlichiosis and anaplasmosis, MERS/SARS, prion disease, tickborne diseases, viral hemorrhagic fever)

March 2019: routine review, update of recent cases

January 2022: added requested reporting for conditions specified in WAC 246-101 updated scheduled for 1/2023 (baylisascariasis, *Candida auris* infection, echinococcosis, taeniasis)

May 19, 2022: Mpox (monkeypox) section was updated to reflect outbreak originating in Europe

June 2, 2022: Mpox moved to a separate document.

December 2022: Condition renamed from Rare Diseases to Additional Reportable Diseases and removed non-notifiable conditions. For 2023 WAC revision combined provider and facility reporting requirement, updated laboratory submission (Section 1B). General updates to notifiable condition sections.

To request this document in another format, call 1-800-525-0127. Deaf or hard of hearing customers, please call 711 (Washington Relay) or email civil.rights@doh.wa.gov.