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1 Executive Summary  
On December 15, 2020, the first COVID-19 vaccination was recorded in Washington State [1]. As more of 

the population received vaccinations, it was important to assess the vaccination status of COVID-19 

cases and identify vaccine breakthrough cases – where a positive lab test, either PCR or antigen, occurs 

at least 14 days after someone received their last recommended dose of an authorized, age-appropriate 

COVID-19 vaccine. To be successful, the Washington State Department of Health (DOH) needed to 

strengthen public health surveillance by establishing a robust linkage process between COVID-19 case 

and vaccine reports. This undertaking was complex. It involved linking COVID-19 case and vaccination 

records that are stored and managed in separate databases, with no shared unique identifying field like a 

person ID. 

Due to the urgent need for linked data, a deterministic record linkage was originally implemented to pair 

the two datasets. However, as the numbers of cases and vaccine reports rapidly increased along with the 

volume of breakthrough cases, this strict and inflexible approach became inadequate. Inexact record 

matches were being missed, which disproportionally impacted BIPOC (Black, Indigenous, and People of 

Color) populations. Furthermore, as demand for and use of the linkage results expanded to high visibility 

efforts like predictive modeling of COVID-19 that informed public policy, a more robust system of record 

linkage was warranted. 

A multi-center project team with representation from Washington State’s Center for Health Statistics 

(CHS), Office of Immunizations (OI) and Center for Data Science (CDS) collaborated to adapt and 

implement a machine learning-based classification model originally developed by CHS. The statistical 

method calculates various distance metrics and flags candidate pairs, trains Radial Support Vector 

Machines (SVM) iteratively, and applies a consensus-based approach using Random Forest (RF) models 

for accurate and conservative record linkage. This n-gram based stacked classification model was 

selected because it was shown to be accurate, easy to automate and deploy, and specifically designed to 

address some of the health equity concerns stemming from known biases in traditional linkage 

methodologies.  

The transition to a machine learning linkage resulted in approximately 11 percent more links between 

COVID-19 case and vaccine records compared to a deterministic linkage. Extensive quality assurance 

testing of the model demonstrated minimal increases in erroneous links, ensuring high linked data 

quality. Notably, the largest proportional increase was observed among BIPOC populations, specifically 

individuals identifying as Hispanic (22.7 percent), ‘Other’ race (19.5 percent), Native Hawaiian/Pacific 

Islander (12.4 percent), and Black/African American (11.6 percent). By identifying more links in these 

BIPOC groups and improving representation of BIPOC in the linked data, we aimed to promote equity in 

downstream data analysis and policy related decisions.  

In conclusion, deterministic linkage strategies are insufficient for equitable surveillance when compared 

to a machine learning based classification. The implementation of the machine learning based linkage 

allowed DOH to assess the vaccination status of COVID-19 cases more accurately and equitably, while 

also strengthening other key surveillance efforts. 
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2 Background 
On December 15, 2020, the first COVID-19 vaccination was recorded in Washington State, beginning a 

wide-reaching campaign to better protect the state’s population from the most severe adverse health 

outcomes of COVID-19 infection [1]. To assess the degree of protection provided by COVID-19 

vaccination, cases and vaccine records must be analyzed together. This involved linking COVID-19 case 

and vaccination records that are stored and managed in separate databases and do not share a unique 

identifying field like a person ID. Initially, the vaccination status of individuals was determined by self-

reporting, through case investigation interviews and manual confirmation via matching vaccine 

administration records in Washington State’s Immunization Information System (IIS). These preliminary 

strategies quickly became unsustainable due to the volume of cases and vaccinations. As a result, 

contacting every case was not possible, leaving linked data incomplete. It was necessary for public health 

surveillance to establish a robust linkage process between COVID-19 case and vaccine records to better 

identify vaccine breakthrough cases.  

Due to the urgency to stand-up a record linkage process, a deterministic record linkage strategy was 

initially implemented to link COVID-19 case records to COVID-19 vaccine records. This methodology 

linked cases to vaccine records only if their first name, last name, and date of birth all matched exactly 

across records (here referred to as a ‘deterministic’ linkage). The Washington State Department of Health 

(DOH) routinely implements deterministic linkages because they are simple, quick to establish, and 

result in few false links due to the strictness of the model. This methodology was sufficient at the time, 

as the scope was initially focused on detecting possible vaccine breakthrough cases for case investigation 

purposes and not to determine population level protection. Due to a large degree of internal and 

external scrutiny and the sensitive nature of determining individual vaccination status for case 

investigations, it was necessary to maintain strict linkage criteria to identify linked records and keep Type 

I errors, falsely linking records belonging to different individuals, as low as possible. 

While the strict linking criteria for the deterministic linkage methodology ensured very few false links, it 

became apparent that many links were being missed due to the variable data quality of records—in 

particular, the consistency of the spelling of names and formats of dates of birth across records. For 

example, there are instances where names are misspelled, transcribed incorrectly, parts of names are 

missing entirely, or a diminutive form of a name is used in one record and not the other. This 

inconsistency hampers the efficacy of a linkage as it can be difficult to determine if mismatching 

information across records truly refers to the same person. 

Inexact but true matches need to be identified to accurately assess vaccination coverage, and overly 

strict rules enable inequities in data quality to manifest as inequity in linked data representation used for 

downstream analysis. It is important to acknowledge that structural racism has deep influences on the 

presence and quality of health data and on data science in general [2]. For example, it is known that 

BIPOC persons (Black, Indigenous, and People of Color) are more likely to have incomplete or incorrect 

information in their health records and are therefore less likely to be successfully linked in a record 

linkage [3,4]. One reason for this is the data collection systems in place are often designed with 

traditionally “Western” name and date standards in mind. Issues arise when failing to account for names 

with diacritical marks (e.g. letters with accent marks like á or the letter “n” with a tilde: ñ), different 

naming structures (such as multiple surnames or different ordering norms), names which transliterate 

into English with multiple correct spellings, and different date structures [3]. This illustrates how a 
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linkage that requires an exact match across all records therefore disproportionally excludes non-White 

and/or Hispanic residents of Washington State.  

The deterministic linkage was active during the late spring to the fall of 2021, and the amount of case 

and vaccine data requiring linkage was increasing. During this time period, Washington expanded its 

phased vaccine rollout to include a broader swath of its population, and the Delta variant caused a spike 

in COVID-19 cases. Concurrently, the results of the linkage were being used by an expanding number of 

different groups for a variety of purposes. This included monitoring vaccine effectiveness against new 

variants, updating the definition of a vaccine breakthrough case, and predictive modeling of COVID-19 

infection trends, which were used to inform public policy in Washington State and a report on COVID-19 

incidence and mortality published by the Center for Disease Control (CDC) [5].  Because the deterministic 

linkage methods resulted in systemic bias, such biases were inherited in any use of the data. It follows 

that continuing to use results from the deterministic linkage would disproportionately limit accurate 

surveillance of BIPOC communities and undermine the validity of DOH’s evidence-based health 

recommendations [6]. A more robust system of record linkage was warranted. 

When exploring alternatives, DOH first considered a traditional probabilistic record linkage strategy. 

Considering that this linkage process would be primarily carried out using the R statistical software, a 

probabilistic strategy was appealing, as there was a well-vetted “out-of-the-box” linking package 

available for use [7]. However, upon consideration, this option was found to be suboptimal.  

The first problem was many proposed probabilistic linking strategies rely on the Fellegi-Sunter statistical 

framework for record linkage [8]. A key assumption underpinning the validity of the Fellegi-Sunter model 

is the conditional independence of the variables used to link records [8-10]. In practice, this assumption 

is often violated. For example, it would be dubious to claim that first name and sex assigned at birth are 

independent because first names are often associated with one sex more than the other. If first name 

and sex assigned at birth are present in a probabilistic linkage, the assumption of conditional 

independence would therefore not hold. The real-world consequence of this is usually written off as 

minor, and the statistical weights of the model are believed to be generally good enough to accurately 

link data [9]. However, relying on a linkage strategy which violated a statistical assumption which 

negatively impacts the accuracy of the linkage—even in a minor way—was nonetheless a detriment to 

this approach. 

Secondly, linking records using a probabilistic linkage involves setting a probability threshold. This cutoff 

depends on the tolerance for false links. If a given record pair does not meet or exceed that threshold, 

they are not linked. The threshold can be manually adjusted and evaluated, but potential links outside 

the threshold require manual investigation—creating resource burden. Minimizing the volume of manual 

review is paramount for sustainable advanced linkages. Additionally, quantitative evaluation of the 

linkage results is made more difficult because the determination of a matching field is typically classified 

as a binary (i.e., either the variable comparison matches or not based on predefined logic). This binary 

result is then weighted and summed with other field comparisons. There often is no quantification of 

how close the fields actually are, resulting in flawed logic for complex and inexact comparisons.  

Furthermore, traditional probabilistic methods do not enable continuous learning on decision criteria 

informed by manual quality assurance analysis. This makes it very difficult to customize algorithms to 

target subpopulation inequities. Even if decision boundaries and weighted scores are disaggregated by 

demographics initially, that boundary remains static unless manually reviewed and adjusted. 
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Alternatively, machine learning models re-ingest manually reviewed and corrected comparisons to learn 

from its mistakes. This leads to fewer comparisons requiring manual review over time and more accurate 

models. As a result, given the ability of machine learning classification models to be continually re-

trained, machine learning linkage techniques are less susceptible to bias when compared to 

deterministic and probabilistic linkage strategies. 

Lastly, probabilistic strategies, particularly out-of-the-box solutions, have demonstrated higher rates of 

error to identify the same number of links as targeted machine learning strategies. Again, extensive 

manual review can mitigate this, but the accuracy of the models is fundamentally different, with false 

detection rates being much higher in probabilistic strategies. This is a frequent finding, and one example 

is presented in Appendix G using the presented data.   

With these limitations in mind, a record linkage methodology developed within Washington State’s 

Center for Health Statistics (CHS) was proposed as an alternative: a non-probabilistic machine learning-

based classification strategy. It addressed most of the concerns with the probabilistic linkage, was shown 

to be accurate, and was easy to automate and deploy to less experienced analysts performing quality 

assurance. This methodology performed remarkably well in previous linkage projects where vital records 

(birth and death records) and hospitalizations records were linked. Given these factors, the machine 

learning approach was chosen to replace the deterministic linkage. 
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3 Methods 
For full methodological details of the implemented machine learning strategy, including procedural 

documentation beyond what is included in the methods section and appendices, please contact WA 

DOH CHS and refer to project MALAYAN CIVET (Machine Learning Auto-bot Yoking Advanced Networks of 

Covid Infection and Vaccine Event Tracking). Best practices were implemented to protect individual 

identities and protected health information. 

3.1 Data Sources and Variables 
Dose level vaccine data were pulled from the COVID-19 vaccine repository created from the Washington 

State Immunization Information System (WAIIS). COVID-19 case data were provided via the Washington 

Disease Reporting System (WDRS). Seven raw identifier variables existed in both datasets: 

1. First Name 

2. Middle Name Initial 

3. Last Name 

4. Sex 

5. Birth Date (DOB) 

6. Phone Number 

7. Postal Code (ZIP) 

The seven shared variables were then standardized, cleaned, and manipulated to enable comparison. 

Alternative fields were created to reflect the multiple ways the same information in each field could be 

interpreted. Alterative fields included splitting potentially compound names and including differing 

values of the same field from various sources. Other manipulated, or transformed, variables to account 

for common data input mistakes were also created as alternative variables. Table 1 displays a few 

commonly transformed alternative variables and their corresponding descriptions. A complete list of 

variables used for linkage is provided in Appendix A. 

Table 1 – Description of transformed variables used in downstream machine learning classification algorithm. 

Transformed Alternative 

Variable 

Parent Variable Description 

DOB Switch DOB YYYYDDMM rather than YYYYMMDD 

First Name Initial First Name The first letter initial of the primary source first 
name 

First Name Frequency First Name The scaled proportion of first name incidence in 
that dataset 

Last Name Frequency Last Name The scaled proportion of last name incidence in 
that dataseti 

 

3.2 Candidate Link Identification 
We merged all variables from each data source to form a pairwise comparison data frame where each 

row represented one individual possible link that contained both COVID-19 case and vaccine 

information. The “fuzzy” join contained custom criteria to avoid blocking on DOB, as many other 

strategies require (see appendix H for detailed definitions of fuzzy matching and blocking). Here, we 
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“fuzzy” block on DOB if at least one other field matches deterministically. The fuzzy join criteria for 

inclusion into the candidate pair frame is listed in Table 2. Un-joined pairs were discarded as non-links. 

Table 2- Inclusion criteria for blocking. Condition 1 and 2 must be met in one of the various ways. 

Condition Vaccine 

Field 

Case Field Inclusion Criteria Or 

1 DOB  DOB  Hamming Distance Below or Equal to 1 Or 

 DOB DOB Switch  Hamming Distance Below or Equal to 1 -- 

AND 

2 First Name First Name  Exact Match Or 

 Last Name Last Name Exact Match Or 

 Phone Phone Exact Match Or 

 ZIP ZIP Exact Match -- 

 

 

3.3 Calculated Fields 
Candidate pairs that were successfully merged then underwent field comparisons to create calculated 

distance metrics, relevant flags, agree/disagree comparisons, and other notable calculations. Name 

fields were compared via cosine and Jaro-Winkler distances. Dates of birth were compared using 

Hamming distance (see appendix F for detailed description of distance metrics employed). Name initials 

(first and middle), sex, and ZIP codes were all compared via a combination of two flags: one indicated if 

the values matched or not, and one indicated if one or more of the compared fields was missing. Lastly, 

phone numbers were compared via Damerau-Levenshtein distance. An exhaustive list of metrics used in 

downstream machine learning models and the description of each calculation is provided in Appendix B.  

Each candidate pair received 15 calculated fields (or flags) which then were utilized in model training, 

development, and deployment. 

 

3.4 Model Training 
Supervised model training occurred iteratively and exclusively utilized Radial Support Vector Machines 

(SVM) for predictions and corrections. To assist in manual review for supervised training, a Platt Scaled 

SVM was trained with name matches and non-matches from a previous project conducted by CHS with a 

similar population distribution. These pseudo-probabilistic scores were used to inform the reviewer on 

how to initially sort sampled data. 

Beginning with a random sample of 10,000 pairs, the calculated fields described in section 3.3 were 

calculated. The Platt Scaled SVM was then applied and grouped to the nearest tenth (resulting in 11 

groups ranging from 0.0 – 1.0+). These groups were then resampled and 100 pairs from each group were 

manually reviewed. A novel, not scaled, radial SVM was then trained on this sample data, and manual 

scaling using logistic regression was used to select target groups for resampling. For example, if groups 

with scaled probabilities between .6 and .8 had samples with both links and non-links, this group was 

likely resampled to bolster the training set. Additionally, if groups 1.0+ and 0 only possessed links of one 

kind, they were likely to be omitted from further sampling. A detailed procedure of the sampling and 
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resampling process for this project is found in Appendix C. 

 

3.5 Model Testing 
The final trained data were applied to the entirety of the historical dataset. Quality assurance (QA) and 

evaluation was initially conducted by the primary developer and included manually checking high 

cumulative scores, or summed distance calculations, and utilizing dimensionality reduction techniques 

(UMAP and TSNE) to visually look for outliers. Visually identified outliers were identified by checking 

clusters with erroneous links and manually observing hyperplane segmentations, a method that 

exemplifies one of the benefits of using SVMs. After the initial screening for false detections and missed 

links, additional reviewers were tasked with targeted quality assurance tasks. These tasks were reviewed 

by both the primary developer and the additional reviewer. In the case of a disagreement, a discussion 

would take place with the primary developer having the final say in the decision. No significant 

disagreements were identified in this project. The three tasks targeted the following: Type II errors, 

failing to link records belonging to the same individuals, caused by very common names, Type I errors 

caused by high cumulative scores, and Type I errors caused by sex disagreements with inexact name 

comparisons. In total, 2,423 comparisons that were deemed possible were manually reviewed and 

incorporated into the training set. 

 

3.6 Historical Linkage Calculation, Predictions, QA and Retraining 
Upon the completion of review by multiple reviewers and retraining, the model was then applied to a 

second run on the full pairwise candidate dataset. Runtime for this second iteration was 2.2 days to fully 

analyze the 1,402,141 case records and the 5,018,906 vaccination records for links utilizing unoptimized 

parallelization. Unoptimized parallelization was implemented to minimize runtime while prioritizing 

stability in spite of computational and hardware constraints. After the pairwise calculations, the 

comparisons were fed into trained SVM and random forest (RF) models trained on the training set 

established above. Default parameters were used in both SVM and RF models apart from SVM using a 

radial, rather than a linear, model. Links were determined only if both the RF and SVM agreed that the 

comparison was a link. This stacked approach ensured the mitigation of Type 1 errors, false detections, 

and erred on the conservative side in linking two records.  

 

3.7 Ongoing Automation 
A significant benefit to utilizing machine learning in data linkage is the ability to establish an ongoing 

automated process that learns from minimal manual QA. After the historical information was linked, an 

automated process to identify new links from incoming vaccination and case data was established. A 

diagram explaining this process is presented in Appendix D.  
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4 Results 
The results in this section reflect findings from the historical run and exclude links established via the 

automated process established thereafter. The date of the historical run was October 21, 2021. Results 

presented in the main text of this report will focus on comparing the machine learning strategy to 

deterministic methods (the previous methodology). A post-hoc evaluation that compares machine 

learning to out-of-the-box probabilistic methods can be found in Appendix G. 

After standardization, cleaning and preprocessing, the total number of records in each data source are 

presented in Table 3.  

 

Table 3 – Total number of records in each data source. Note the number of records were higher than reported, 
due to to our liberal inclusion criteria. 

Dataset Records (n) 

Case Records  1,402,141 

Vaccine Records  5,018,916 

  

After blocking, calculations and classification identified positive matches and links were compiled. The 

number of links found by the SVM + RF model were compared to deterministically linked pairs (Exact 

match of DOB and name). Overall, the machine learning method found 11.39 percent more links than 

deterministic methods (Table 4 & Figure 1). 

 

Table 4 – Total number of links identified by deterministic and machine learning approaches. 

Method Links (n) 

Deterministic 736,564 

Machine Learning (SVM + RF) 820,441 

  



 

Prioritizing Equitable Representation, Sustainability, and Accuracy: The Deployment of Machine Learning Linkage 

Strategies During the COVID-19 Pandemic 3/31/2023 11 

 

Figure 1 – Percent increase in total links by method. 
 

To evaluate these results, a targeted quality assurance analysis was conducted, focusing on those links 

identified in one method but not the other. A total of 90 deterministically linked record pairs were 

determined to be non-links by the machine learning model, and the machine learning model found 

84,060 linked pairs that failed to achieve deterministic criteria. From these record comparisons, we 

manually reviewed all 90 deterministic links the machine learning model missed and a sample of 1,000 

records that failed deterministic criteria that the model classified as links. In total, 40 of the 90 links 

found by deterministic methods were true non-links, which in turn indicated the machine learning model 

failed to capture 50 true links. Additionally, three of the 1,000 sampled links made by the machine 

learning model were errors. Table 5 displays the sample and estimated ‘full’ false discovery rate (FDR) for 

each approach. The estimated full FDR assumes agreements between the two methods are true 

positives, then extrapolates FDRs at the sample FDR rate for method disagreements. FDRs for both 

models increased over time and were the highest during the Omicron COVID-19 wave, where each 

model observed a three-fold increase in FDR. We cover the impacts of Omicron on FDR in the discussion. 

 

Table 5 – Quality Assurance sample description with calculated sample and estimated FDR along with the 
maximum observed FDR during the Omicron wave *(peak FDR between November 2021 – April 2022). 

Method Exclusively 

Identified 

Links 

Sample For 

Review 

Sample FDR Estimated 

Full FDR 

Max 

Omicron 

Observed 

FDR* 

Deterministic 90 90 .44 0.005% 0.016% 

SVM + RF 84,060 1000 .003 0.035% 0.11% 
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The machine learning approach found a total of 83,877 additional links between the historical datasets 

at a slightly higher Type I error rate (demonstrated above). A breakdown of the types of inexact links 

found is displayed in Table 6. Counts were recorded at the link level with multiple vaccines and cases 

allowed for each person. Furthermore, each inexact record link was allowed to be represented in 

multiple groups. Inexact name comparisons and DOBs were most prevalent.  

 
Table 6 – Types of inexact links identified by the machine learning approach. Proportions were calculated with a 
total denominator of n = 820,441 (The number of links found using Machine Learning Method). 

Group Count (n) Proportion (%) 

Inexact DOB 13,413 1.6% 

M/F Sex Disagreements 6,562 0.8% 

Name Gender Disagreements 2,107 0.3% 

Middle Name Disagreements 6,598 0.8% 

Inexact First Name 42,067 5.1% 

Inexact Last Name 39,716 4.8% 

Inexact First & Last Name 3,648 0.4% 

DOB Switch 2,195 0.3% 

 

Linked records were then disaggregated by race and ethnicity to evaluate proportional increases for each 

subgroup. The overall increase of identified links provided by implementing the machine learning 

approach was 11.4 percent. Proportional increase for Black/African Americans, Native Hawaiian/Pacific 

Islanders, Individuals identifying as ‘Other’ race, and Hispanics were all above that baseline rate. Table 7 

and 8 display the increases for each race and ethnicity subgroup. 
 

Table 7 – Links identified by each method disaggregated by Race.  

Race Deterministic SVM + RF  Percent Increase 

(Δ %) 

American Indian/Alaskan Native 12,307 13,702 11.3% 

Asian 54,867 60,779 10.8% 

Black/African American 31,952 35,658 11.6% 

Native Hawaiian/Pacific Islander 8,533 9,589 12.4% 

White 443,138 482,472 8.8% 

Other 99,598 119,017 19.5% 

Multiracial 43,047 47,922 11.3% 

NA 43,122 51,302 19.0% 
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Table 8 – Links identified by each method disaggregated by Ethnicity. 

Ethnicity Deterministic SVM + RF Percent Increase 

(Δ %) 

Hispanic 87,060 106,858 22.7% 

Not Hispanic 567,916 617,470 8.73% 

NA 81,588 96,113 17.8% 

 

Similar to the approach of Table 6, we investigated the inexact links captured by the machine learning 

model versus deterministic approaches and disaggregated results into two groups: White/Non-Hispanic 

links and BIPOC (Non-White and/or Hispanic links). This disaggregation is displayed in Figure 1. Appendix 

E tabulates this data and omits records with missing race/ethnicity data. The BIPOC group had 

proportionally more variation on truly linked records compared to their White/Non-Hispanic 

counterparts in every comparison. In other words, BIPOC records had more inexact matches that 

traditional methods would miss with deterministic or fuzzy methods. 

 

 

Figure 2- A comparison of inexact link rates between majority subpopulation (White/Non-Hispanic) and BIPOC 
subgroup (Non-White and/or Hispanic). Note the higher proportion of inexactness in all types for BIPOC 
subpopulations. 
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5 Discussion 
The results of transitioning from a deterministic to a supervised machine learning linkage strategy led to 

several key improvements in COVID-19 case vaccination status surveillance. First, the non-probabilistic 

machine learning classification strategy established more links between case and vaccination records 

compared to the deterministic linkage. Next and most important, when analyzing the increase in links by 

race and ethnicity groups, the greatest proportional increase in the number of links was among BIPOC 

subgroups. Based on the total amount of links captured from the machine learning linkage, the largest 

groups of inexact matching links are from inexact first name, last name, and date of birth record pairs. 

And lastly, while the machine learning linkage consistently captured more links than the deterministic 

linkage, the magnitude of that increased linkage rate also increased over time.  

The large increase in links among BIPOC subgroups was likely due to higher error rates in their vaccine 

and/or case records (Table 9). As established in previous research, BIPOC subgroups are more likely to 

have missing or incorrect information in their health records compared to White and non-Hispanic 

groups [3,4]. The machine learning classification method of establishing links allows for records 

containing errors or lacking information in certain fields to be linked. The increase in the number of links 

identified among Hispanic people was by far the largest. One reason for this finding was the machine 

learning linkage methodology was designed to robustly account for naming conventions more common 

among Hispanic people. For example, people who have double surnames can have one of their 

surnames mistakenly present in their middle name field or captured differently in data collection systems 

using different hyphenation or spacing standards or have a part of their name missing entirely. In each of 

these situations, the machine learning linkage can account for the differences and establish a link, 

indicating a key strength of the machine learning linkage over probabilistic methods. Using the SVM 

portion of the stacked classification method, clusters of links are created, enabling different decision 

thresholds for each cluster. For example, higher variability present in Hispanic/Latino last names can be 

accounted for and addressed by the model. Additionally, this enables the use of nonlinear 

dimensionality reduction techniques (TSNE and UMAP) to visually investigate clusters graphically. This 

kind of clustering is not a component of current probabilistic methods. Furthermore, the same 

probabilistic thresholds are applied uniformly to all potential links, even if there is an uneven distribution 

in the type of inexact matching information. This typically results in probabilistic methods requiring 

much more manual customization and review than machine learning methods. The stacked machine 

learning approach we implemented addresses the shortcomings of less specific manual review prevalent 

in probabilistic linkages through clustering, allowing for much more targeted checks and therefore less 

required manual review overall. 

Another finding was a high relative improvement of linkage rates among people whose race was missing 

or entered as “Other”. The proportional increases in the number of links among these groups more 

closely mirrored the increases among people of color, suggesting that these populations are 

disproportionately BIPOC. This clearly demonstrates that despite the considerable gains in the number of 

links among non-White/Hispanic groups, they are still underrepresented in the final linkage products. 

Though still underrepresented, it is paramount to understand that the flexibility and robustness of the 

machine learning linkage approach improved linkage rates among BIPOC residents in a way that would 

not be feasible using other linkage techniques.  
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When comparing the estimated false linkage rates of the deterministic and machine learning linkage 

strategies, the deterministic linkage demonstrated consistently lower rates. This finding was expected, as 

the strict criteria necessary to establish a link using this methodology results in very few incorrect links. 

In this case, the only way a false link can be established using a deterministic strategy is through linking 

records from two different people who happen to have the exact same first name, last name, and date of 

birth. This is highly unlikely to occur in any significant frequency. The higher false linkage rate for the 

machine learning linkage was expected, as allowing inexactly matching records to still be linked 

intrinsically allows for a greater degree of potential error. This intentional increase in error was 

deliberate to enable greater increases in representation. 

In terms of linking COVID-19 case and vaccine administration records, it was found that the consequence 

of this slightly higher false linkage rate was marginal when compared to the benefit of increasing the 

number of captured links, especially among BIPOC individuals. The negative effect of a higher false 

linkage rate was further mitigated by routine manual QA, which was established in the machine learning 

linkage process where questionable links are routinely reviewed and corrected if necessary. No 

analogous routine QA process could be established for the deterministic linkage, as there was no 

quantification of how similar record pairs were to each other. 

Further analysis of false linkage rates over time showed both methodologies became less accurate when 

comparing rates from November 2021 to April 2022. During this time, both linkage strategies 

experienced an approximate three-fold increase in their false linkage rates. Crucially, the Omicron 

COVID-19 wave resulted in an unprecedented level of increases in COVID-19 cases over this time period. 

Additionally, the FDA expanded the emergency use authorization for COVID-19 boosters for all 

individuals age 18 and older in mid-November 2021 [11]. Consequently, there was a higher than usual 

number of new COVID-19 vaccine administrations during the winter months of 2021 and early 2022. 

Compounding the problem of the incredibly high volume of data to be collected over a short period of 

time was the heterogeneity in Washington State’s health care providers and their data collection 

systems. As a result, the quality, completeness, and timeliness of the case and vaccination administration 

data submitted to DOH varied considerably over this period. This had a profound impact on the efficacy 

of the deterministic linkage. Over this time, the deterministic linkage captured about 140,000 new links 

compared to the machine learning linkage, which captured about 400,000. It was clear that the 

inflexibility of the deterministic linkage was a significant impediment during the Omicron wave. 

Beyond capturing significantly more links, the machine learning linkage methodology improved upon the 

deterministic linkage in other ways. After the initial historical batch run, the machine learning linkage ran 

quicker compared to the deterministic linkage. This is due to the deterministic linkage completing a full 

historical linkage during every run. This is significantly slower than the machine learning linkage 

methodology shown in Appendix D, where only new vaccine doses and cases are eligible to be linked. 

Another improvement relative to the deterministic linkage was the iterative machine learning process. 

Not only were the linkage models able to be improved and more accurately link cases and vaccine 

records over time, but the amount of manual QA necessary to carry out this task decreased. Through 

manual review, the boundary line between links and non-links became clearer. Beyond the first few 

months of runs, the amount of manual review dropped from several pairs of links every day, to about 

two or three pairs of records per week.  

This case study has several notable limitations and can be summarized thusly: 
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• Vaccination data used for the linkage was stored in a way that did not allow for easy correction 

or editing of that source data. 

• A name frequency parameter was used as a variable in link classification that was based on the 

frequency of names within Washington State as a whole, but it did not factor name frequency 

within race groups. 

• The standardization of name fields impacts names containing characters and punctuation not 

found in the standard 26 letter English alphabet more than other names. This forced 

standardization creates some error as characters are transformed to fit the English alphabet. 

• The process of blocking record pairs, which reduces the amount of record comparisons that flow 

into the linkage models, can erroneously lead to missed links. 

Vaccine records stored in the WAIIS, which is a live database, can be updated or corrected if necessary. 

However, due to data sharing limitations, the linkages were unable to use the live data. Instead, daily 

static snapshots of new vaccine doses were provided to the team conducting the linkage. The result was 

that the vaccine information available to link was limited to only what was contained in these snapshots. 

Any subsequent edits or corrections were either not available to be shared or entered as new, 

sometimes duplicative vaccine doses. One consequence of this was a higher-than-expected amount of 

inexact matching information. For the most part, the vaccine information was later corrected in the live 

database. But these corrections were not reflected in the source data that was run through the linkage. 

Another consequence was vaccine doses administered to the same person can be submitted multiple 

times, and each instance can have a different unique person ID number. These records are often merged 

and reconciled in the live database, but these corrections are not reflected in the static data used for the 

linkage. This can result in an artificially high number of links due to linking duplicate records. 

Deduplication procedures may remedy this, but all linkages without exception are susceptible to the 

deficits in data quality that they inherit.  

Another limitation specific to the machine learning methods implemented here is the name frequency 

parameter used in link classification. While this metric did help separate classification clusters, a 

consequence of using this parameter was that records with very common names were less likely to be 

classified as a link. Furthermore, this parameter is not built for each race or ethnicity group. This means 

that common names in racial groups which are small compared to the overall size of the population are 

not accurately represented. An example of this is the name “Mohammed” or “Muhammad,” which is 

often cited as the most popular name in the world, but not in Washington State [12]. This name has a 

relatively low overall incidence in Washington State but has a relatively high incidence among smaller 

regional subgroups such as North African, Middle Eastern, or South Asian residents. In this case, it could 

lead to a higher false linkage rate among people with common names within smaller race groups. 

The final set limitations discussed here are the preprocessing and blocking of data prior to any linkage 

algorithm implementation. Preprocessing the data standardizes alphanumeric values to enable 

algorithmic comparison. This forces all names and identifiers into standard Latin characters, removing 

any special characters and punctuation. This impacts non-western identifiers more, as the incidence of 

these characters and manipulations are more common in BIPOC subgroups. Furthermore, blocking 

strategies to remove insignificant comparisons has an error rate. This error rate is hypothesized to 

disproportionately impact BIPOC comparisons due to increased variability in data consistency. Newer 
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blocking methods are warranted and currently being implemented to move away from logic-based 

filtering, which is necessary to maximize equitable representation downstream. 

Moving forward, we have outlined some upstream data issues which need to be considered when 

evaluating the efficacy of this machine learning linkage. The issue of common names in smaller 

subgroups presents a challenge in accurately linking these populations. To take the example presented 

above, it was found that a disproportionate number of people with common North African, Middle 

Eastern, and South Asian names were mislabeled as links compared to other populations. It was also 

found that many residents belonging to these race groups have a birth date listed as January 1. Looking 

into this phenomenon further, it was revealed that US residents without accurate birth records are 

assigned January 1 as a birth date. Overall, this manifests itself as a subpopulation with higher-than-

expected matching birthdates and a small number of very common names resulting in more false links. 

This also highlights a strength of the machine learning linkage process established here, as targeted QA 

can identify these clusters of cases for more rigorous review. This would be a far more effective solution 

compared to probabilistic or deterministic linkages that would require a significantly more burdensome 

and less specific manual review to correct. 
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6 Conclusions 
When linking data from separate sources, establishing a linkage process that directly mitigates the 

inequities stemming from poor data quality is paramount for adequate surveillance. As demonstrated 

above, deterministic linkage techniques inherit biases present in source data and cannot easily overcome 

this limitation without correcting this data. While probabilistic linkage strategies can overcome some 

biases inherent in the data, they are limited in their capacity to improve accuracy for several reasons. 

Probabilistic linkage strategies contain arbitrary confidence thresholds and have demonstrated higher 

error rates without exhaustive and intensive manual review. Subsequent analyses and recommendations 

based on these linked data will be incomplete and often inadequate. More robust linkage strategies such 

as the machine learning methodology presented here have highlighted the insufficiencies of 

deterministic and probabilistic linkages, especially when issues regarding source data quality cannot be 

addressed.  

Moving forward, we recommend surveillance systems and linkage projects that rely on deterministic 

linkages be heavily scrutinized.  Another conclusion, which is critical when thinking about this machine 

linkage approach in public health practice, is its impact on health equity. Errors and missing information 

in health records are inevitable, and these errors disproportionately impact BIPOC populations. Solutions 

to remedy these upstream data quality problems are often difficult and involve substantial changes to 

data collection systems themselves. This is further complicated by the myriad of different submitters of 

health information and the flexibility required by the DOH to accept different data formats. While further 

efforts to standardize health information submission and methods of collecting health data will aid 

linkage efforts greatly, this is a lengthy process and there is an immediate need for high quality linked 

health information. Deterministic and probabilistic linkage strategies either fail to account for variable 

data quality among different subpopulations or are limited in their ability to target specific populations 

for manual review. Establishing a machine learning linkage enabled better vaccine breakthrough 

identification and allowed for more complete linked data to assess vaccination status of COVID-19 cases 

among all Washingtonians, regardless of race and/or ethnicity. The machine learning linkage strategy 

serves as a direct response to the inequities present in health data quality. The robustness and ease of 

maintenance of this linkage methodology makes it an invaluable tool for workers involved in public 

health surveillance and policy making. 
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8 Appendix A – Description of Data Variables 
Cases Description 

CASE_ID Unique identifier for WDRS 
COVID Cases 

DOB #1 Primary DOB on record 

DOB #2 Secondary DOB from alternative 
demographic table 

PHONE #1 Primary phone on record 

PHONE #2 Secondary phone on record 

PHONE #3 Tertiary phone on record 

SEX Sex on record 

ZIP Zip/Postal code provided  

MIDDLE INITIAL #1 Primary middle name first letter 

MIDDLE INITIAL #2 Secondary middle name first 
letter 

FIRST NAME #1 Primary first name on record 

FIRST NAME #2-#3 Alternative names from other 
tables 

FIRST NAME #1 INITIAL First letter of primary first name 

LAST NAME #1 Primary last name on record 

LAST NAME #2-#3 Alternative names from other 
tables 
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Vaccines Description 

RecipientID Unique identifier from IIS 

DOB #1 Primary DOB on record 

DOB #2 Secondary DOB from alternative 
demographic table 

DOB Switch #1 Primary DOB with month and 
day switched (if valid) 

DOB Switch #2 Secondary DOB with month and 
day switched (if valid) 

PHONE #1 Primary phone on record 

PHONE #2 Secondary phone on record 

SEX #1 Sex on record 

SEX #2 Sex from demographic table (if 
different from SEX #1) 

ZIP #1 Zip/Postal code provided 

ZIP #2 Alternate Zip/Postal code 
provided 

MIDDLE INITIAL #1 Primary middle name first letter 

MIDDLE INITIAL #2 Secondary middle name first 
letter 

FIRST NAME #1 Primary first name on record 

FIRST NAME #2 - #8 Alternative names from other 
tables and splitting 

FIRST NAME #1 INITIAL First letter of primary first name 

LAST NAME #1 Primary last name on record 

LAST NAME #2-#8 Alternative names from other 
tables and splitting 

FIRST NAME FREQUENCY The scaled frequency of the first 
name used in linkage 
comparison 

LAST NAME FREQUENCY The scaled frequency of the last 
name used in linkage 
comparison 
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9 Appendix B – Description of Calculations 
Calculation Description 

DOB_HAM Hamming distance between numeric date of birth. Either 0 or 1 due to 
our inclusion criteria for the pairwise data frame. 

SEX_Disagree Was there an explicit M/F disagreement between records? 0 was no, 1 
was yes. If a U or blank was present, the value was 0 (no explicit 
disagreement by our criteria). 

NAME_GENDER_Disagree Probable gender prediction of first name disagree – This value comes 
from an index file produced from all-time WHALES birth record data. For 
each name in the birth record table, a sex at birth breakdown was 
calculated. Each name was designated as primarily male, primarily 
female, or in the case that there were equivalent number of each sex at 
births, neither primarily male/female. This table was joined in and if 
there was a M/F designation disagreement between the first names, a 
flag of 1 was produced. If there was no explicit disagreement in primary 
sex, the flag is set at 0. 

FIRSTNAME_COSn2 Minimum bigram cosine distance of all first name field comparisons. This 
field breaks up each first name field into n-gram chunks of 2 letters then 
computes the cosine distance. We use cosine distance to capture 
compound name similarities because it cares less about vector length. 

LASTNAME_COSn2 Minimum bigram cosine distance of all last name field comparisons. This 
field breaks up each last name field into n-gram chunks of 2 letters then 
computes the cosine distance. We use cosine distance to capture double 
surname similarities because it cares less about vector length. 

FIRSTNAME_JW Minimum Jaro-Winkler distance of all first name field comparisons. We 
use JW to capture misspelled names of similar lengths in addition to the 
cosine distance calculation. 

LASTNAME_JW Minimum Jaro-Winkler distance of all first name filed comparisons. We 
use JW to capture misspelled names of similar lengths in addition to the 
cosine distance calculation. 

MINAME_Disagree Are both middle initials present, and if so, do they disagree? If they 
disagree a value of 1 is flagged, if they agree or if at least one value is 
missing, a value of 0 is coded. 

MINAME_Missing Is there a missing middle initial in one or both sides of the comparison? 
This flag differentiates a match vs. a non-disagreement due to missing 
variables. 

COMBNAME_COS Trigram cosine distance of all first and last name fields (deduped) in one 
string. By including a compound first-last name field we are attempting 
to capture first-last name switches, and we include a trigram (n-gram size 
3) cosine distance calculation to parse out cases that bigram similarity is 
higher than optimal because of the n-gram length. Trigram should 
correct these cases. 

PHONE_DL Damerau-Levenshtein distance of phone number. We use this rather 
than hamming to capture clerical errors with less position dependencies. 

PHONE_MISSING Is there a missing phone in one or both sides of the comparison? This 
flag differentiates a match vs. a non-disagreement due to missing 
variables. 
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ZIP_GEO Estimated distance between two zipcode values. Zipcodes are translated 
to a centroid based lat/long set of variables provided in an index file 
ripped from Github. Then we calculate the megameter distance between 
the two lat/long pairs. Megameter was chosen to standardize between 
0-1 without any distortion from distribution effects. Distances were 
maxed at 1 megameter, suitable for the range of WA. 

ZIP_MISSING Is there a missing zipcode value in one or both sides of the comparison? 
This flag differentiates a match vs. a non-disagreement due to missing 
variables. 

FM_SWITCH_ALERT Evidence of a first/middle name switch? If the first name initial of the 
case data matches the middle name initial of the vaccination data AND 
the first name initial of the vaccination data matches the middle name 
initial of the case data, then the flag is set at 1. Otherwise, it is set at 0. 

FIRST_NAME_FREQ Frequency of first name in dataset from the vaccination side. 

LAST_NAME_FREQ Frequency of last name in dataset from the vaccination side. 
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10 Appendix C – Sequential Training Methodology Notes 
1. Random sample of 10,000 pairs 

2. Calculate distance metrics for all pairs 

3. Group pairs into 11 stratified pseudo-probabilistic groups based off previously trained SVM on 

just name and DOBs 

a. Group 1 = 0 - .1 

b. Group 2 = .1-.2 

… 

       k. Group 11 = 1+ 

4. Sample 1 - sampled 100 from each group above for manual review 

5. 1,100 pairs reviewed, 17.4 percent of these records were found to be pairs 

6. All pairs were plotted in a logistic function with the x-axis being SVM score and the Y being the 

binary (1-link, 0-not a pair) 

7. A SVM was trained using this labeled data – here SVM_1 

8. Sample 2 repeated the process of sample 1 while avoiding resampling those included in the first 

sample and only sampled pairs with SVM scores higher that .4 (There were no links in sample 1 

at this value that were links) 

9. 600 pairs reviewed, 32 percent of these records were found to be pairs 

10. SVM_1 then predicted linkage status for pairs in sample 2, agreement was already at 99 percent  

11. Sample 2 and Sample 1 were then added together to create a cumulative sample, which was 

then plotted in a logistic function to determine the next region of focus. 

12. Cumulative sample #1 trained a new SVM 

13. Sample 3 focused on pairs with name SVM scores between .72 and .93 determined by the 

logistic function in step 11. This ‘zooming in’ on areas where probabilities are non-zero and non-

one is critical for our strategy and suitable samples from this region is crucial to capture the 

variance of this region. 

14. 1,000 pairs were manually reviewed, 16.1 percent  were found to be pairs. Agreement was 

above 99 percent  with predicted values from the SVM trained on cumulative sample 1 

15. Sample 3 was added to the cumulative sample creating Cumulative sample #2 

16. And SVM was trained on cumulative sample #2 

17. Another logistic function was fit to this cumulative sample 

18. Sample 4 and 5 were utilized to fix a few bugs in the calculation fields in which the SVM was 

retrained using corrected values and changed predictions were reviewed manually. 4 was used 

to review new links and 5 was used to review newly rejected pairs. 

19. TSNE and UMAP were used to visually observe clusters and identify and outlier clusters that 

were misclassified 
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11 Appendix D – Automated Process Schematic 
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12 Appendix E – Race/Ethnicity Disaggregation of Inexact Match 

Types 
 

-Group 
White/Non-Hispanic BIPOC (Non-White and/or Hispanic) 

Count (n) Proportion (%) Count (n) Proportion (%) 

Inexact DOB 5,512 1.26% 4,167 1.53% 

M/F Sex 
Disagreements 

2,541 0.58% 2,746 1.01% 

Name Gender 
Disagreements 

840 0.19% 805 0.30% 

Middle Name 
Disagreements 

2,933 0.67% 2,874 1.05% 

Inexact First Name 17,435 3.99% 15,698 5.76% 

Inexact Last Name 12,664 2.90% 19,309 7.08% 

Inexact First & Last 
Name 

966 0.22% 1,820 0.67% 

DOB Switch 243 0.06% 369 0.14% 

TOTAL 436,688 -- 272,761 -- 
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13 Appendix F – Description of Distance Metrics Employed 
Distance 

Metric 

Description Formula 

Hamming Comparing two equal 
length strings via 
binary agreements 
and disagreements. 

𝛴(𝐵𝑖𝑡 𝐷𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑠) 

Cosine Measure of how 
dissimilar/similar two 
vectors are based on 
their angle. Vector 
length does not 
influence score and 
uses q-gram 
components to 
calculate score. 

𝑐𝑜𝑠𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐷𝐶(𝐴, 𝐵) ≔ 1 − 𝑆𝐶(𝐴, 𝐵) 
  
Where: 

𝑆𝐶(𝐴, 𝐵) ≔ cos(𝜃) = 
𝐴 · 𝐵

||𝐴|| ||𝐵||
=  

∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖=1

√∑ 𝐴𝑖
2 · ∑ 𝐵𝑖

2𝑛
𝑖=1

𝑛
𝑖=1

 

  

Jaro-Winkler Accounts for matching 
characters, length of 
strings, and number of 
transpositions. 

𝐽𝑎𝑟𝑜 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑖𝑚𝑗 = 
1
3⁄ (

𝑚

|𝑠1|
+
𝑚

|𝑠2|
+
𝑚 − 𝑡

𝑚
) 

Where: 
1. 𝑚 is the number of matching characters and is not 0 
2. |𝑠1| is the length of string s₁ 
3. 𝑡 is the number of transpositions 

 
𝐽𝑎𝑟𝑜 −𝑊𝑖𝑛𝑘𝑙𝑒𝑟 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  𝑠𝑖𝑚𝑗 +  ℓ𝑝(1 − 𝑠𝑖𝑚𝑗) 

 
Where: 

1. ℓ is the length of common prefix at the start of the 
string up to 4 characters 

2. 𝑝 is a constant scaling factor between .1 and .25 
 

Damerau-
Levenshtein 

Minimal number of 
insertions, deletions 
and replacements 
needed for 
transforming string a 
into string b allowing 
transposition of 
adjacent symbols. 

𝑑𝑎,𝑏(𝑖, 𝑗) = 𝑚𝑖𝑛

{
 
 

 
 
0                                                𝑖𝑓 𝑖 = 𝑗 = 0

𝑑𝑎,𝑏(𝑖 − 1, 𝑗) + 1                    𝑖𝑓 𝑖 > 0

𝑑𝑎,𝑏(𝑖, 𝑗 − 1) + 1                   𝑖𝑓 𝑗 > 0

𝑑𝑎,𝑏(𝑖 − 1, 𝑗 − 1) + 1(𝑎𝑖≠𝑏𝑗)  𝑖𝑓 𝑖, 𝑗 > 0

𝑑𝑎,𝑏(𝑖 − 2, 𝑗 − 2) + 1(𝑎𝑖≠𝑏𝑗)  𝑖𝑓 𝑖, 𝑗 > 1

 

Where: 
1. 𝑑𝑎,𝑏(𝑖 − 1, 𝑗) + 1 is a deletion 

2. 𝑑𝑎,𝑏(𝑖, 𝑗 − 1) + 1  is an insertion 

3. 𝑑𝑎,𝑏(𝑖 − 1, 𝑗 − 1) + 1(𝑎𝑖≠𝑏𝑗) is a match or mismatch 

4. 𝑑𝑎,𝑏(𝑖 − 2, 𝑗 − 2) + 1(𝑎𝑖≠𝑏𝑗) is a transposition 

Agreement/
Missing 

A combination of do 
the strings match 
exactly. If not was one 
or more string missing 
data? 

1. {
𝑎 = 𝑏
𝑎 ≠ 𝑏

 

2. {
𝑎 = 𝑁𝐴
𝑏 = 𝑁𝐴
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14 Appendix G – Probabilistic Results Compared to Machine 

Learning Strategy 
To compare machine learning results with a probabilistic solution, a post-hoc analysis on machine 

learning results was conducted using the R package fastLink [13]. fastLink (FL) will serve as our “out-of-

the-box” probabilistic comparison and is based on the Fellegi-Sunter methodology. The probabilistic 

model used all variables and did not block off anything deterministically. All parameters in the fastLink 

package utilized defaults except threshold values (accepted posterior probabilities). 

Since the ML links have been reviewed and vetted, a known pool of inexact true links can be evaluated 

using these probabilistic methods. Machine learning (ML) inexact links were fed into the probabilistic 

matching function, and links were derived at multiple threshold levels. Inexact links here are defined as 

true links with one or more comparative disagreement in name or DOB. The gross number of inexact 

links identified by each method and threshold are presented in the table below. 

Method Threshold (pm%) Inexact Links (n) 

Machine Learning -- 42,123 

fastLink 99 34,300 

fastLink 98 37,743 

fastLink 97 37,877 

fastLink 95 38,112 

fastLink 90 38,660 

fastLink 85 38,809 

fastLink 75 42,298 

 

At higher confidence thresholds (probabilities above 85 percent) probabilistic methods do not capture as 

many inexact matches as ML. In addition to capturing less links, error rates are higher, as shown in the 

figure below. 

 

The performance of Machine Learning methods 

on inexact matches, which we have shown to 

impact BIPOC persons more, indicates that ML 

methods outperform commonly implemented 

probabilistic solutions and can provide a greater 

degree of equity in linkage rates. 
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15 Appendix H – Glossary of Terms and Definitions 
Term Definition 

Deterministic Matching 

In deterministic matching, a precise linkage between two datasets is 

established when every matching variable exhibits exact 

agreement. 

Fuzzy Matching 

Fuzzy matching is a data linkage approach used to match records 

from diverse datasets by considering approximate matches and 

accommodating variations, errors, and inconsistencies within the 

data. It enables the identification of potential matches based on the 

degree of similarity or dissimilarity between data values, allowing 

for more flexible and inclusive data linkage processes. 

Blocking 

Blocking is a data preprocessing technique designed to mitigate the 

inherent computational complexity in inexact matching processes. 

This process involves dividing datasets into smaller, more 

manageable subsets or blocks based on a defined set of variables. 

Subsequently, these distinct blocks are independently processed to 

identify potential matches, leading to a reduction in the total 

number of candidate comparisons and an overall enhancement in 

the efficiency of the inexact matching algorithm. 

Hamming Distance 

Hamming Distance quantifies dissimilarity between two equal-

length strings by counting the positions at which corresponding 

elements in the two strings differ. 

Damerau-Levenshtein Distance  

Damerau-Levenshtein Distance measures the dissimilarity between 

two strings by calculating the minimum number of operations 

(insertions, deletions, substitutions, and transpositions of adjacent 

characters) required to transform one string into another. 

Jaro-Winkler Distance  

Jaro-Winkler Distance calculates string similarity by considering the 

number of matching characters, the frequency of transpositions, 

and the length of a shared prefix at the beginning of the strings, up 

to a maximum of four characters.  

Cosine Distance  

Cosine Distance, also known as Cosine Similarity, quantifies vector 

similarity based on the angle between them. It remains 

uninfluenced by vector length. In our application, a value 

approaching 0 signifies strong similarity, while 1 indicates 

dissimilarity. 
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Radial Support Vector 

Machines  

Radial Support Vector Machines are a supervised machine learning 

algorithm within the Support Vector Machines (SVM) family, 

tailored for classification and regression tasks. They excel when 

dealing with complex, nonlinear data patterns. The term 'radial' is 

derived from their use of radial basis functions to transform data 

into higher-dimensional space, enhancing their ability to define 

decision boundaries. Radial SVM is known for its robust 

performance in identifying optimal decision boundaries or 

regression curves. 

Random Forest Models 

Random Forest is a machine learning technique used for 

classification and regression. It combines multiple decision trees, 

each trained on a different data subset through bootstrapping. RF 

models aggregate predictions from these trees, enhancing accuracy 

and robustness. They are known for their ability to handle complex 

data and avoid overfitting. 

 

  



 

Prioritizing Equitable Representation, Sustainability, and Accuracy: The Deployment of Machine Learning Linkage 

Strategies During the COVID-19 Pandemic 3/31/2023 31 

16 Equity and Social Justice Manager Peer-Review 
In the early stages of the COVID-19 pandemic, cases involving COVID-19 were linked using vaccination 

records. Vaccination status was solely determined by self-reported information. However, this method 

became unsustainable, and data were incomplete due to the impossibility of contacting every new case. 

Therefore, there was an increasing need to establish a better linkage process to better identify vaccine 

breakthrough cases, which are instances where an individual tests positive for COVID-19 after being fully 

vaccinated. 

A deterministic record linkage, which produces links based on common identifiers or variables, was 

initially used. But it was only able to link vaccination records if first name, last name, and date of birth 

matched across all records. Although deemed necessary, it quickly became apparent the quality of the 

data was flawed because of name and date of birth data entry errors during data collection. This is in 

addition to biases in data collection systems towards “traditional” American names. Diacritic marks, 

naming structures, name translation, and varying date structures create date entry discrepancies that 

disproportionately impact BIPOC communities. Therefore, BIPOC are less likely to have records linked 

due to the overly strict rules of the deterministic linkage strategy. 

By mid-2021, the COVID-19 vaccine rollout was well underway with cases and vaccination data 

increasing. There was also an increased demand for the data to devise a strategy for the State of 

Washington’s response and efforts to control the spread of the COVID-19. Because of the deterministic 

methodology, there was a downstream, or reactive analysis, so it was determined the continued use of 

incomplete or inaccurate data would negatively impact the surveillance of BIPOC and increase health 

disparities. 

The Department of Health also considered a traditional probabilistic linkage strategy, a strategy that 

expands the potential identifiers and can produce more reliable results than the deterministic linkage 

strategy. This also proved to be inadequate, with a higher rate of error due to the statistical assumptions, 

the need to minimize manual intervention, and the inability to customize algorithms to detect inequities. 

Ultimately, the Washington State’s Center for Health Statistics developed a non-probabilistic machine 

learning-based linkage strategy, proven in previous linkage projects to be the most effective and reliable 

strategy, requiring less manual intervention. 

In my review of the background for the implementation of the machine learning linkage strategy, I 

recommend this paper be accepted. The effort to be more inclusive by addressing disparities in data 

systems will undoubtedly have a positive impact on the health outcomes of groups experiencing 

disproportionate risk of disease. 

Although I find no major issues in the background, I do find minor issues in certain limitations. 

Discrepancies created by the inability to use live data versus the snapshots of records and the 

duplication of records with different “person ID numbers” may impact the quality of the data as 

mentioned in the discussion. There could be some concern over the validity of the data because of the 

potentially misleading inflated number of linkages due to the duplications of records. However, 

notwithstanding the limitations, the ability to address inequitable data linkage by creating strategies able 

to provide more complete data is imperative to accurately assess health disparities and the impact of 

public health interventions. 
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Anthony Rivers 

Equity and Social Justice Manager  

Disease Control and Health Statistics 

Washington State Department of Health 
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