Washington State COMMUNICABLE DISEASE REPORT 2013

John Snow, Father of Modern Epidemiology

"Public health - always working for a safer and healthier Washington."

For additional copies of this document or to obtain this document in an alternative format please contact:

Washington State Department of Health Communicable Disease Epidemiology 1610 NE 150th St Shoreline WA, 98155 206-418-5500 or 1-877-539-4344

Artwork on cover courtesy of Centers for Disease Control and Prevention and Sherryl Terletter.

DOH 420-004 Revised October 2014

WASHINGTON STATE DEPARTMENT OF HEALTH

Disease Control and Health Statistics Communicable Disease Epidemiology 1610 NE 150th Street Shoreline, WA 98155 206-418-5500 or 1-877-539-4344

COMMUNICABLE DISEASE REPORT 2013

CONTRIBUTORS

COMMUNICABLE DISEASE EPIDEMIOLOGY

Michael Boysun, MPH Mary Chadden Natasha Close, MPH Jeanne Cummings, RN, BSN, CIC Marisa D'Angeli, MD, MPH Chas DeBolt, RN, MPH Marcia Goldoft, MD, MPH, MS Vivian Hawkins, MS, PhD Jason Lempp, MPH, CIC Soyeon Lippman, PhD Kathy Lofy, MD Nicola Marsden-Haug, MPH Jasmine Matheson, MPH Beth Melius, RN, MN, MPH Hanna Oltean, MPH Tracy Sandifer, MPH Laurie Stewart, MS Elliot Swanson, MPH Azadeh Tasslimi, MPH Doreen Terao Sherryl Terletter Wayne Turnberg, PhD, MSPH

INFECTIOUS DISEASE

Sheanne Allen, MPH, MCHES Teal Bell, MPH Jason Carr, MPH Maria Courogen, MPH Claire LaSee, MPH, MSW Jennifer Reuer, MPH Shawn McBrien, MPH Tom Jaenicke, MPH, MBA, MES Julieann Simon, MSPH

PREVENTION AND COMMUNITY HEALTH

Shana Johnny, RN, MN

John Wiesman, DrPH, MPH Secretary of Health

Kathy Lofy, MD Health Officer

Jennifer Tebaldi, MBA, RS Assistant Secretary Disease Control and Health Statistics

Wayne Turnberg, PhD, MSPH Director for the Office of Communicable Disease Epidemiology

Maria Courogen, MPH Director for the Office of Infectious Disease

Scott Lindquist, MD, MPH State Epidemiologist for Communicable Disease

Romesh Gautom, PhD Director, Public Health Laboratories

Cathy Wasserman, PhD State Epidemiologist for Non-Infectious Disease

This report represents Washington State communicable disease surveillance: the ongoing collection, analysis and dissemination of morbidity and mortality data to prevent and control communicable disease. In addition to the contributors listed on the previous page, we would like to recognize the staff of the Washington State Public Health Laboratories, the staff of Washington's local health jurisdictions who contribute to surveillance, investigation, and prevention of communicable diseases in our state, and the thousands of people in clinics, hospitals and clinical laboratories throughout Washington whose disease reports constitute the basis for this document.

Table of Contents

Executive Summary—2013	v
Technical Notes	v
Communicable Disease Summary, Arboviral Disease	1
West Nile Virus	1
Yellow Fever	2
Botulism	2
Brucellosis	3
Campylobacteriosis	3
Chlamydia Infection	4
Cholera	4
Cryptosporidiosis	4
Cyclosporiasis	5
Diphtheria	5
Giardiasis	6
Gonorrhea	6
Haemophilus influenza (Invasive Disease, Under 5 Years of Age)	7
Hantavirus Pulmonary Syndrome	8
Hepatitis A	8
Hepatitis B	9
Hepatitis C	9
Hepatitis D or E	10
Herpes Simplex, Initial Genital or Neonatal	10
HIV/AIDS	11
Legionellosis	11
Leptospirosis	12
Listeriosis	12
Lyme Disease	12
Malaria	13
Measles	13
Meningococcal Disease (Invasive)	14
Mumps	15
Pertussis	15
Plague	16
Polio	16
Psittacosis	16
Q Fever	17
Rabies (Human)	17
Rabies, Suspected Human Exposure	18
Rare Diseases of Public Health Significance, African Tick Bite Fever	21
Anaplasmosis	21
Anisakiasis	21
Babesiosi	22
Burkholderia	22

Coccidioidomycosis	
Creutzfeldt-Jakob Disease (CJD)	23
Cryptococcosis	23
Cysticercosis	23
Typhus	24
Vaccinia Transmission	24
Rare Sexually Transmitted Diseases	24
Relapsing Fever	25
Rubella	25
Salmonellosis (Non-Typhoid)	
Shellfish Poisoning, Paralytic, Domoic Acid or Diarrhetic	27
Shiga Toxin-producing Escherichia coli (STEC)	
Shigellosis	
Syphilis	29
Tetanus	29
Trichinosis (Trichinellosis)	
Tuberculosis	31
Tularemia	
Typhoid Fever	32
Vibriosis (Non-Cholera).	
Waterborne Outbreaks	
Yersiniosis	
Appendix I. Disease Incidence and Mortality Rates	
Appendix II. Special Topics	73
Local Health Jurisdiction Special Topic	74
Highly Antibiotic Resistant Bacterial Surveillance Carbapenem-resistant Enterobacteriaceae	75
Healthcare Associated Infections (HAI) Program.	77
Foodborne Disease Outbreaks 2013	78
Influenza Surveillance 2013-2014	82
Appendix III. State Demographics	

Tables

Table 2. Number of meningococcal disease cases by serogroup, Washington State, 2005-2013
Table 3. Rabid Non-Bat Animals and Rabies Strains, Washington State, 1987-2013. 18
Table 4. Washington State Bats Tested for Rabies, 2009-2013. 19
Table 5. Washington State Animals Tested for Rabies, 1988-2013. 20
Table 6. Salmonella Serotypes, 2013.
Table 7. Shiga Toxin-producing Escherichia coli (STEC) Serotypes, 2013
Table 8. Waterborne Outbreaks, 1991-2013.
Table 9. Foodborne Disease Outbreaks, 2007-2013
Table 10. Agents associated with Foodborne Disease Outbreaks, 2013
Table 11. Foodborne Disease Outbreaks Reported to Washington State Department of Health, 201380

Executive Summary – 2013

This report summarizes notifiable communicable diseases reported by local health jurisdictions to the Washington State Department of Health in 2013. The most common case reports continued to be sexually transmitted conditions, infections caused by enteric pathogens, pertussis, and tuberculosis. Rare conditions of public health significance that were reported include African tick bite fever, coccidioidomycosis, Creutzfeldt-Jakob Disease (CJD), cryptococcosis, and Anaplasma phagocytophilium.

Technical Notes

Washington Administrative Code (WAC) Chapters 246-100 and 246-101 outline disease surveillance requirements: healthcare providers and facilities, laboratories, veterinarians, food service establishments, childcare facilities, and schools must report certain notifiable conditions including communicable diseases to the local health jurisdiction or Department of Health. Local health jurisdictions report to the Department of Health electronically via the Public Health Issue Management System (PHIMS).

Cases of communicable notifiable conditions were included in this annual report if they met the following criteria (these criteria do not apply to HIV, chronic hepatitis, sexually transmitted diseases, or tuberculosis):

- 1. Resident of Washington.
- 2. Onset dates during the 2013 CDC Year (December 30, 2012 December 28, 2013).
- 3. Case report entered into PHIMS by March 1, 2014 if the condition is common (>10 cases per year).
- 4. Case report entered into PHIMS prior to May 15, 2014 if the condition is rare (≤10 cases per year).

5. Very rare conditions (0-2 cases per year) reported to DOH after the previous year's deadline (if not reported in a previous annual report).

Given a valid DOH case classification by Department of Health (as described in the guidelines for each condition: <u>http://www.doh.wa.gov/PublicHealthandHealthcareProviders/NotifiableConditions/</u>

<u>ListofNotifiableConditions.aspx</u>). For select conditions, certain valid DOH classifications are excluded from the annual report. The following table lists the valid combinations of conditions and classifications that are excluded from the annual report.

Classification(s)	Conditions
Probable and Suspect	Measles; Rubella
Probable	Diphtheria; Poliomyelitis
Suspect	Lyme Disease; Mumps

Counts of asymptomatic presumptive viremic blood donors with West Nile Virus are included in the annual report; these cases are classified as suspect West Nile Virus Disease cases in PHIMS.

Depending on the condition, it is likely only a fraction of the actual number of cases will be reported to a surveillance system. Case patients may not be aware of being infected, are symptomatic but do not contact a health care provider, are not confirmed by the provider with appropriate tests, or are not reported after the diagnostic testing.

Disease summary tables in Appendix I reflect historical years when data are reliable. Population estimates used in rate calculations come from the Washington State Office of Financial Management: <u>http://www.ofm.wa.gov/pop/asr/default.asp</u>. Previously reported disease rates for 2000 through 2010 were updated using new population estimates based on the 2010 decennial census. Rates are not provided for fewer than 5 cases and are not age-adjusted due to the small numbers of cases for almost all conditions.

This report is available online at: <u>http://www.doh.wa.gov/DataandStatisticalReports/</u> DiseasesandChronicConditions/CommunicableDiseaseSurveillanceData/AnnualCDSurveillanceReports

Monthly Washington State disease surveillance data are available online at: <u>http://www.doh.wa.gov/</u> <u>DataandStatisticalReports/DiseasesandChronicConditions/CommunicableDiseaseSurveillanceData/</u> <u>MonthlyCDSurveillanceReport.aspx</u>.

Additional information on communicable disease surveillance and case investigation in Washington is available at: <u>http://www.doh.wa.gov/PublicHealthandHealthcareProviders/NotifiableConditions/</u> ListofNotifiableConditions.aspx.

For other information or to request the report in an alternate format, contact:

Washington State Department of Health

Office of Communicable Disease Epidemiology

1610 NE 150th Street, MS K17-9

Reporting a Notifiable Condition

In accordance with Washington State rule (<u>http://www.doh.wa.gov/PublicHealthandHealthcareProviders/</u><u>NotifiableConditions.aspx</u>), public health and health care professionals should report most notifiable conditions to the local health jurisdiction in the county of the patient's residence. Disease reporting telephone numbers for each local health jurisdiction are provided at <u>http://www.doh.wa.gov/Portals/1/Documents/1200/phsd-LHJ.pdf</u>. If no one is available at the local health jurisdiction and a condition is immediately notifiable or is notifiable to the Department of Health, please call the 24-hour reporting line: 877-539-4344. For a complete list of notifiable conditions for health care providers, hospitals, laboratories and veterinarians, please refer to <u>http://www.doh.wa.gov/PublicHealthandHealthcareProviders/NotifiableConditions/HowToReport.aspx</u>.

Notifiable Conditions & the Health Care Provider

The following conditions are notifiable to public health authorities in accordance with WAC 246-101

- Report to the local health jurisdiction of the patient's residence within the timeframe indicated by
- footnote (except for conditions followed by a reporting phone number) Immediately notifiable conditions (Bold Imm) must be reported as soon as clinically suspected

Acquired immunodeficiency syndrome (AIDS)^{3d} (including AIDS in persons previously reported with HIV infection) Animal bites (when human exposure to rabies is suspected) Imm Anthrax Imm Arboviral disease ^{3d} (West Nile virus disease, dengue, Eastern & Western equine encephalitis, St Louis encephalitis, and Powassan)^{3d} Asthma, occupational (suspected or confirmed)^{Mo} 1-888-66SHARP Birth Defects^{Mo}: autism spectrum disorders, cerebral palsy, alcohol related birth defects ^{Mo} 360-236-3533 Botulism (foodborne, wound and infant) Imm Brucellosis (Brucella species) 24h Burkholderia mallei (Glanders) Imm and pseudomallei (Melioidosis) Imm Campylobacteriosis 3d Chancroid 3d Chlamydia trachomatis infection ^{3d} Cholera Imm Cryptosporidiosis 3d Cyclosporiasis 3d Diphtheria Imm Disease of suspected bioterrorism origin Imm Domoic acid poisoning Imm E. coli - Refer to "Shiga toxin producing E. coli Imm Emerging condition with Outbreak potential Imm Giardiasis 3d Gonorrhea 3d Granuloma inguinale 3d Haemophilus influenzae (invasive disease, children < age 5) Imm Hantavirus pulmonary syndrome 24h Hepatitis A, acute infection ^{24h} Hepatitis B, acute 24h Hepatitis B, chronic (initial diagnosis/previously unreported cases) Mo Hepatitis B, surface antigen positive pregnant women ^{3d} Hepatitis C, acute ^{3d} and chronic ^{Mo} (initial diagnosis only) Hepatitis D (acute and chronic infections) ^{3d} Hepatitis E (acute infection) 24h Herpes simplex, neonatal and genital (initial infection only)^{3d} HIV infection 3d Immunization reactions ^{3d} (severe, adverse) Influenza, novel or unsubtypable strain imm Influenza-associated death (lab confirmed) ^{3d} Legionellosis 24h Leptospirosis 24h Listeriosis 24h Other rare diseases of public health significance ^{24h} Lyme disease ^{3d} Unexplained critical illness or death ^{24h} CODE LEGEND

Lymphogranuloma venereum ^{3d} Malaria ^{3d} Measles (rubeola) acute disease only Imm Meningococcal disease (invasive) Imm Monkeypox Imm Mumps (acute disease only) 24h Outbreaks of suspected foodborne origin Imm Outbreaks of suspected waterborne origin Imm Paralytic shellfish poisoning Imm Pertussis^{24h} Pesticide poisoning 1-800-222-1222 Hospitalized, fatal, or cluster Imm Pesticide poisoning, all other ^{3d} Plaque Imm Poliomyelitis Imm Prion disease ^{3d} Psittacosis 24h Q fever 24h Rabies (confirmed human or animal) Imm Rabies, suspected human exposure Imm Relapsing fever (borreliosis) 24h Rubella (include congenital rubella syndrome) Imm (acute disease only) Salmonellosis 24h SARS Imm Shiga toxin-producing *E. coli* infections Imm (enterohemorrhagic E. coli including, but not limited to, *E. coli* 0157:H7; also includes post-diarrheal hemolytic uremic syndrome) Shigellosis 24h Smallpox Imm Syphilis (including congenital) 3d Tetanus ^{3d} Trichinosis 3d Tuberculosis Imm Tularemia Imm Vaccinia transmission Imm Vancomycin-resistant Staphylococcus aureus 24h (not to include vancomycin intermediate) Varicella-associated death 3d Vibriosis 24h Viral hemorrhagic fever Imm Yellow fever Imm Yersiniosis 24h

Imm Immediately – Requires a phone call to reach a live person at the local health jurisdiction, 24/7

- ^{24h} Within 24 hours Requires a phone call if reporting after normal public health business hours
- 3d Within 3 business days Мо Monthly

Phone numbers by county: http://www.doh.wa.gov/Portals/1/Documents/1200/phsd-LHJ.pdf If no one is available at the local health jurisdiction, call 1-877-539-4344

Notifiable Conditions & Washington's Health Care Facilities

The following conditions are notifiable to public health authorities in accordance with WAC 246-107 When a condition occurs in or is treated by the health care facility:

- Report to the local health jurisdiction of the patient's residence within the timeframe indicated by • footnote (except for conditions followed by a reporting phone number) Immediately notifiable conditions (Bold ^{Imm}) must be reported as soon as clinically suspected
- Hospital laboratories should refer to Notifiable Conditions & Washington's Laboratories.

Acquired immunodeficiency syndrome (AIDS)^{3d} (including Malaria 3d AIDS in persons previously reported with HIV infection) Animal bites (when human exposure to rabies is suspected) Imm Anthrax Imm Arboviral disease ^{3d} (acute disease only: West Nile virus, dengue, Eastern & Western equine encephalitis, etc.) Asthma, occupational (suspected or confirmed) ^{Mo} **1-888-66SHARP** Birth Defects ^{Mo} 360-236-3533 (abdominal wall defects, autism spectrum disorders, cerebral palsy, Down syndrome, alcohol-related birth defects, hypospadias, limb reductions, neural tube defects, oral clefts) Botulism ^{Imm} (foodborne, infant, and wound) Brucellosis ^{24h} Burkholderia mallei (Glanders) ^{Imm} and pseudomallei (Melioidosis) ^{Imm} Plague Imm Campylobacteriosis 3d Chancroid 3d Chlamydia trachomatis 3d Cholera Imm Q fever 24h Cryptosporidiosis 3d Cyclosporiasis 3d Diphtheria Imm Disease of suspected bioterrorism origin Imm Domoic acid poisoning Imm E. coli – Refer to "Shiga toxin-producing E. coli Imm Emerging condition with outbreak potential Imm SARS Imm Giardiasis^{3d} Gonorrhea 3d Granuloma inguinale 3d Gunshot Wounds Mo 360-236-2867 Haemophilus influenzae (invasive disease, children < age 5) Imm Hantavirus pulmonary syndrome 24h Hepatitis A, acute 24h Hepatitis B, acute 24h Tetanus ^{`3d} Hepatitis B, chronic (initial diagnosis/previously unreported cases) Mo Hepatitis B, surface antigen positive pregnant women ^{3d} Hepatitis C, acute ^{3d}; chronic ^{Mo} (initial diagnosis only) Hepatitis D, acute and chronic ^{3d} Hepatitis E, acute 24h HIV infection ^{3d} Immunization reactions ^{3d} (severe, adverse) Influenza, novel or unsubtypable strain Imm Vibriosis 24h Influenza-associated death (laboratory confirmed) ^{3d} Legionellosis 24h Leptospirosis 24h Listeriosis 24h Lyme disease ^{3d} CODE LEGEND Unexplained critical illness or death 24h

Lymphogranuloma venereum ^{3d} Measles (rubeola) acute disease only Imm Meningococcal disease (invasive) Imm Monkeypox Imm Mumps (acute disease only) 24h Outbreaks of disease that occur or are treated in the health care facility Imm Outbreak of suspected foodborne origin Imm Outbreak of suspected waterborne origin Imm Paralytic shellfish poisoning Imm Pertussis 24h Pesticide poisoning 1-800-222-1222 Hospitalized, fatal, or cluster Imm Pesticide poisoning, all other ^{3d} Poliomyelitis Imm Prion disease ^{3d} Psittacosis 24h Rabies (confirmed human or animal) Imm Rabies, suspected human exposure ^{Imm} Relapsing fever (borreliosis) 24h Rubella (include congenital rubella syndrome) Imm (acute disease only) Salmonellosis 24h Shiga toxin-producing *E. coli* infections Imm (enterohemorrhagic E. coli including, but not limited to, E. coli 0157:H7; also includes post-diarrheal hemolytic uremic syndrome) Shigellosis 24h Smallpox Imm Syphilis (including congenital)^{3d} Trichinosis 3d Tuberculosis Imm Tularemia Imm Vaccinia transmission Imm Vancomycin-resistant Staphylococcus aureus 24h (not to include vancomycin intermediate) Varicella-associated death 3d Viral hemorrhagic fever Imm Yellow fever Imr Yersiniosis 24h Other rare diseases of public health significance ^{24h}

Imm Immediately – Requires a phone call to reach a live person at the local health jurisdiction 24/7

- ^{24h} Within 24 hours Requires a phone call if reporting after normal public health business hours 3d Within 3 business days
- Phone numbers by county: http://www.doh.wa.gov/Portals/1/Documents/1200/phsd-Мо Monthly LHJ.pdf If no one is available at the local health jurisdiction, call 1-877-539-4344

Notifiable Conditions & Washington's Laboratories

The following laboratory results (preliminary or confirmed) are notifiable to public health authorities in Washington in accordance with WAC 246-101. Timeframes and report recipients are indicated in the footnotes. **Immediately notifiable results are indicated in bold**. Information provided must include: specimen type; name and telephone number of laboratory; date specimen collected; date specimen received; requesting health care provider's name and telephone number; test result; and name of patient. Also required when available in the lab database are: patient sex, date of birth or age, and full address (or zip code at a minimum)

Arboviruses 2d (West Nile virus, eastern and western equine encephalitis, dengue, St. Louis encephalitis, La Crosse encephalitis, Japanese encephalitis, Powassan, California serogroup, Chikungunya) Acute: IgM positivity, PCR positivity, viral isolation Blood level (algueted) ^{2d &i} Blood lead level (elevated) 2d Blood lead level (non-elevated) Mo &i Bordetella pertussis (Pertussis)^{24h*!} Borrelia burgdorferi (Lyme disease)^{2d*} Borrelia hermsii or recurrentis (Relapsing fever, tick- or louseborne) ^{24h} Brucella species (Brucellosis) 24h*! Burkholderia mallei and pseudomallei^{lmm*!} Campylobacter species (Campylobacteriosis) 2d* CD4 + (T4) lymphocyte counts and/or CD4 + (T4) Mo &ii (patients aged thirteen or older) Chlamydia psittaci (Psittacosis)^{24h*} Chlamydia trachomatis^{2d} Clostridium botulinum (Botulism) Imm * ! Corynebacterium diphtheriae (Diphtheria) Imm*! Coxiella burnetii (Q fever) 24h*! Cryptococcus non v.neoformans^{2d}! Cryptosporidium (Cryptosporidiosis) 2d* Cyclospora cayetanensis (Cyclosporiasis)^{2d*1} E. coli^{Imm*1} (refer to "Shiga toxin-producing E. coli") Francisella tularensis (Tularemia) Imm* Giardia lamblia (Giardiasis)^{2d} Haemophilus influenzae (children < 5 years) Imm * ! Hantavirus 24h Hepatitis A virus (acute) by IgM positivity ^{24h}* (Hepatocellular enzyme levels to accompany report) Hepatitis B virus (acute) by IgM positivity ²² Hepatitis B virus, by: HBsAg (Surface antigen); HBeAg (E antigen); HBV DNA^M

Hepatitis C virus Mo Hepatitis D virus 2d * Hepatitis E virus 24h* Human immunodeficiency virus (HIV) infection ^{2d &ii} (for example, positive Western blot assays, P24 antigen or viral culture tests) Human immunodeficiency virus (HIV) infection Mo &ii (All viral load detection test results - detectable and undetectable) Influenza virus, novel or unsubtypable strain Imm*! Legionella species (Legionellosis)^{24h *} Leptospira species (Leptospirosis)^{24h *} *Listeria monocytogenes* (Listeriosis)^{24h*!} Measles virus (rubeola)^{Imm*!}, acute, by: IgM positivity, PCR positivity Mumps virus, acute, by IgM positivity; PCR positivity^{24h*!} Mycobacterium tuberculosis (Tuberculosis) Neisseria gonorrhoeae (Gonorrhea)^{2d*} Neisseria meningitidis (Meningococcal disease) Imm*! Plasmodium species (Malaria)^{2d} Poliovirus ^{Imm*!}, acute, by: IgM positivity, PCR positivity Rabies virus (human or animal) Salmonella species (Salmonellosis)^{24h*1} SARS-associated coronavirus Imm *! Shiga toxin-producing *E. coli* ^{Imm*!} (enterohemorrhagic E.coli including, but not limited to, E. coli O157:H7) Shigella species (Shigellosis) 24h* Treponema pallidum (Syphilis)^{2d*!} Trichinella species 2d Vancomycin-resistant *Staphylococcus aureus*^{24h*!} Variola virus (smallpox)^{Imm*!} Vibrio cholerae O1 or O139 (Cholera) Imm*! Vibrio species (Vibriosis)^{24h*!} Viral hemorrhagic fever Imm*! Arenaviruses, Bunyaviruses, Filoviruses, Flaviviruses Yellow fever virus Imm *! Yersinia enterocolitica or pseudotuberculosis 24h Yersinia pestis (Plague) Imm *!

CODE LEGEND

Imm Immediately notifiable - Requires a phone call to reach a live person at the local health jurisdiction, 24/7

- ^{24h} Notifiable within 24 hours Requires a phone call if reporting after normal public health business hours
- ^{2d} Notifiable within 2 business days
- ^{Mo} Notifiable on a monthly basis
- Notifiable to the local health jurisdiction (LHJ) of the patient's residence. If unknown, notify the LHJ of the health care provider that ordered the diagnostic test
- ^{&i} Notifiable to DOH Lead Program **360-236-3359**
- ^{&ii} Notifiable to DOH IDRH Assessment 360-236-3419
- ^{&iii} Notifiable to DOH TB Reporting Line **360-236-3397** or TB Reporting Fax Line **360-236-3405**
- Specimen submission required (submission upon request for all others)
- [®] Antibiotic sensitivity testing (first isolates only)

Phone numbers by county are posted at: <u>http://www.doh.wa.gov/Portals/1/Documents/</u> 1200/phsd-LHJ.pdf

If no one is available at your local health jurisdiction, please call **1-877-539-4344**

For more information, see <u>WAC 246-101</u> or <u>http://www.doh.wa.gov/PublicHealthandHealthcareProviders/NotifiableConditions.aspx</u> Last Updated July 17, 2013 DOH 210-002 (2/11)

Notifiable Conditions

& the Veterinarian

Veterinarians, including those working in private practices, laboratories, academic settings, zoos, wildlife centers, animal shelters and government agencies, have an important public health role in the identification and control of zoonotic and vector-borne diseases.

The Washington State Administrative Code (<u>WAC 246-101-405</u>) outlines these responsibilities for veterinarians:

- **A.** Notify the local health officer of the jurisdiction in which the human resides of any suspected human case or suspected human outbreak based on the human's exposure to a confirmed animal case of any disease listed in Table
- **B.** Cooperate with public health authorities in the investigation of cases, suspected cases, outbreaks, and suspected outbreaks of zoonotic disease.
- **C.** Cooperate with public health authorities in the implementation of infection control measures including isolation and quarantine.
- D. Comply with requirements in chapter 16-70 WAC for submitting positive specimens and isolates for specific diseases, and provide information requested by the Washington State Department of Health or local health jurisdiction.

Notifiable Condition (report suspected human cases)	Report Immediately	Report within 24 hours
Anthrax	Х	
Arboviral disease		Х
Brucellosis (Brucella species)		Х
Burkholderia mallei (Glanders)	Х	
Disease of suspected bioterrorism origin (including but not limited to anthrax)	Х	
<i>E. coli</i> – Refer to "Shiga toxin-producing <i>E. coli</i> "	Х	
Emerging condition with outbreak potential	Х	
Influenza virus, novel or unsubtypable strain	Х	
Leptospirosis		Х
Plague	Х	
Psittacosis		Х
Q Fever		Х
Rabies (suspected human case or exposure or animal case)	Х	
Shiga toxin-producing <i>E. coli</i> infections (enterohemorrhagic <i>E. coli</i> including, but not limited to, <i>E. coli</i> O157:H7)	Х	
Tularemia	Х	

IMPORTANT NOTE: Selected animal diseases, especially in livestock and poultry, must be reported to the Washington State Department of Agriculture, State Veterinarian's Office. These include eradicated diseases (e.g., tuberculosis, brucellosis), suspected foreign animal diseases (e.g., foot and mouth disease, exotic Newcastle disease, hog cholera) and certain domestic diseases (e.g., anthrax, rabies). See: <u>http://app.leg.wa.gov/WAC/default.aspx?cite=16-70</u>.

*A list of local health departments can be found at <u>http://www.doh.wa.gov/AboutUs/PublicHealthSystem/LocalHealthJurisdictions.aspx</u>.

Communicable Disease Summary

Arboviral Disease

Cause: Various viruses transmitted by arthropods. <u>Ar</u>thropod-<u>bo</u>rne viral (arboviral) diseases include West Nile virus disease and yellow fever (both discussed separately below), Chikungunya virus disease, Colorado tick fever, dengue fever, eastern and western equine encephalitis, St. Louis encephalitis, Japanese encephalitis, and others.

Illness and treatment: There are 4 main clinical forms: central nervous system (CNS) illnesses; fevers of short duration with or without rash; hemorrhagic fevers; and polyarthritis and rash with or without fevers. Treatment is supportive.

Sources: Transmission is most commonly by the bite of arthropods (e.g., mosquitoes, sandflies, ticks). Rare transmission occurs through blood transfusions or organ transplantations.

Prevention: Avoid arthropod bites by wearing appropriate clothing and using insect repellents. If traveling to risk areas, consult with a travel clinic or the CDC Travelers' Health website regarding additional measures, including vaccination for Japanese encephalitis or yellow fever.

Recent Washington trends: In recent years, 10-20 cases of travel-associated dengue and a few travelassociated Chikungunya cases have been reported annually. Rare reports of other travel-associated arboviral diseases include Colorado tick fever and Japanese encephalitis in 2008, and St. Louis encephalitis and Toscana virus in 2009. Other than West Nile virus, the last reported human arboviral infection acquired in the state was western equine encephalitis in 1988. St. Louis encephalitis infections occurred in the past, primarily east of the Cascade Mountains.

2013: 14 cases of dengue fever were reported following travel.

West Nile Virus (WNV) Disease

Cause: West Nile virus.

Illness and treatment: About 80% of those infected are asymptomatic, around 20% have WNV fever (fever, headache, rash), and less than 1% develop WNV neuroinvasive disease (meningitis, encephalitis, paralysis). Treatment is supportive.

Sources: Many bird species are reservoirs. Mosquitoes are the vectors, transmitting the virus through bites to humans and other mammals such as horses. WNV can be transfused, so donated blood is screened and pre-sumptive viremic donors are reported as possible cases.

Prevention: Avoid mosquito bites by wearing appropriate clothing and using insect repellents. Make sure windows and doors are "bug tight". Maintain window screens. Eliminate breeding sites by draining standing water such as in pots or tires.

Recent Washington trends: Infected birds and horses were first detected in 2002. The first locally acquired human infections were reported in 2006. In 2009, Washington had the highest number of cases to date with 38 cases and 2 presumptive viremic donors. Of these cases, 36 infections were known to be endemically acquired within Washington.

2013: One travel-associated case and one asymptomatic viremic blood donor, also travel associated, were reported.

Yellow Fever

Cause: Yellow fever virus.

Illness and treatment: Early symptoms include fever, headache, muscle aches, and vomiting. Later signs include jaundice, gum bleeding, and bloody vomit in addition to liver and kidney failure. Twenty to 50% of jaundiced cases are fatal. Treatment is supportive.

Sources: Yellow fever occurs in tropical areas of Africa and South America. Transmission is by the bite of an infected mosquito. There are 2 transmission cycles, a jungle cycle involving non-human primates and an urban cycle involving humans.

Prevention: When in endemic countries, avoid mosquito bites by wearing appropriate clothing, using insect repellents, using bed nets, and making sure windows and doors are "bug tight". Consult with a travel clinic or the CDC Travelers' Health website for recommendations about vaccination.

Recent Washington trends: No cases, with the exception of a vaccine-associated infection in 2002, have been reported in over 50 years of surveillance.

2013: No cases were reported.

Botulism

Cause: Bacterial toxin from Clostridium botulinum, mainly types A, B, and E.

Illness and treatment: Forms are <u>foodborne botulism</u> (ingested toxin), <u>wound botulism</u> (toxin production in an infected wound), <u>infant botulism</u> (toxin produced in the intestine of a child under one year of age), <u>adult colonization botulism</u> (toxin produced in the intestine of an adult), and <u>inhalational botulism</u> (inhaling toxin, which does not happen naturally). Paralysis starts with facial muscles and often progresses to involve the breathing muscles. Infants may have a weak cry, difficulty feeding leading to weight loss, and weakness. Treatment is supportive care plus either human-derived botulism hyperimmune globulin (BIG-IV) for infants or botulism antitoxin for older children and adults. In addition, antibiotics are given for wound botulism.

Sources: *C. botulinum* spores are common in soil. No consistent exposure is known for infants. Inadequately processed home-canned foods are implicated in foodborne botulism. Wound botulism is usually associated with injecting black-tar heroin into the skin ("skin popping") or muscle.

Additional risks: Infant botulism cases usually occur in babies under 3 months old (almost always under 6 months), both breast fed and formula fed.

Prevention: Follow safe home canning procedures. Boil risky home-canned foods (i.e., low acidic, non-pickled foods) before consumption.

Recent Washington trends: Each year there are 0 to 4 reports of foodborne botulism, 0 to 9 reports of infant botulism and 0 to 7 reports of wound botulism. Almost all are type A.

2013: Two cases of foodborne botulism (one with consumption of home-canned venison, and the other with consumption of home-canned tuna), 4 cases of infant botulism and 4 cases of wound botulism were reported.

Brucellosis

Cause: Bacteria in the genus Brucella.

Illness and treatment: Symptoms include fever, profuse sweating, fatigue, loss of appetite, chills, weight loss, headache, and joint pain. Treatment is with antibiotics.

Sources: Infection results from broken or damaged skin contacting animal tissues (particularly placentas or aborted fetuses) and animal fluids, or by consuming unpasteurized dairy products from infected species (mainly cattle, goats, sheep and swine). Airborne infection can occur in laboratories handling *Brucella* cultures. Strains of *Brucella* used in animal vaccine prior to 1996 had a greater risk for causing disease in humans if unintentionally injected.

Prevention: Avoid unpasteurized dairy foods. Veterinarians, farmers and hunters should wear gloves when handling sick or dead animals or when assisting an animal giving birth. Laboratory workers should handle all specimens under appropriate biosafety conditions.

Recent Washington trends: Although brucellosis has been eradicated from cattle in the state since 1988, there are 0 to 3 reports of human brucellosis infections each year, primarily due to consumption of raw dairy products in foreign countries.

2013: One case of brucellosis with exposure to raw milk cheese while in Mexico was reported.

Campylobacteriosis

Cause: Bacteria in the genus Campylobacter, most commonly C. jejuni.

Illness and treatment: Symptoms include diarrhea, sometimes containing blood, abdominal pain, fatigue, fever, and vomiting. Most persons will recover without treatment; however, serious complications can occur.

Sources: Transmission is fecal-oral, through ingestion of contaminated food that was inadequately cooked or mishandled, or through direct contact with animals. Reservoirs are animals such as cattle, puppies, kittens, swine, sheep, rodents and birds. Person-to-person transmission is uncommon. Commonly recognized exposures include: handling or eating undercooked/raw poultry, meat, unpasteurized (raw) milk or dairy products; drinking contaminated and inadequately treated water; and having contact with animals, especially young animals with diarrhea and poultry.

Additional risks: Those with weakened immune systems are at increased risk for infection.

Prevention: Avoid eating undercooked poultry and unpasteurized dairy products. Thoroughly clean cutting boards and counters used for raw meat or poultry to prevent contamination of other foods. Wash hands after handling animals, bird feces, or raw meat, particularly poultry.

Recent Washington trends: Campylobacteriosis is the most commonly reported enteric illness in Washington with 1,000 to 1,500 reports a year. Outbreaks involving person-to-person transmission are uncommon.

2013: 1,631 cases were reported.

Chlamydia Infection

Cause: Bacterium Chlamydia trachomatis.

Illness and treatment: Asymptomatic infection is common. There may be pain during urination or abnormal genital discharge. Females can have abdominal pain due to pelvic inflammatory disease, which can cause infertility or ectopic pregnancy. The patient and sexual partners should take appropriate antibiotics. Treated patients should be retested in 3 months or when they next present for medical care.

Sources: Chlamydial infection is sexually transmitted or may be acquired at birth.

Additional risks: Disease rates are highest among sexually active adolescents and young adults.

Perinatal infection can result in neonatal conjunctivitis or pneumonia.

Prevention: Use safe sexual practices to reduce transmission. Screen sexually active women at risk to detect infection in asymptomatic patients. Test and treat all recent sexual partners of a person diagnosed with chlamydia infection to stop ongoing transmission.

Recent Washington trends: Recently over 20,000 cases are reported each year.

2013: 25,013 cases were reported (363.43 cases/100,000 population).

Cholera

Cause: Bacterial toxin from *Vibrio cholerae* serogroup O1 or O139. Other *V. cholerae* do not produce toxin and cause milder illness notifiable as Vibriosis.

Illness and treatment: Illness ranges from mild symptoms to severe sudden profuse watery diarrhea leading to life-threatening dehydration. Treatment is fluid replacement and antibiotics.

Sources: The bacteria are carried in the human intestine and spread mainly through fecally contaminated food or water. The only environmental reservoir in the United States is the Gulf of Mexico where raw seafood may be contaminated.

Additional risks: Unsafe drinking water, poor hygiene, poor sanitation and crowded living conditions can cause epidemics, particularly in urban areas of developing countries and in refugee situations in Asia, Africa and Latin America. Persons with reduced stomach acid are at increased risk.

Prevention: If traveling to risk areas, consult with a travel clinic or the CDC Travelers' Health website for recommendations about vaccination and other measures.

Recent Washington trends: A case was reported in 2002 following travel to the Philippines.

2013: One case was reported, associated with travel to Haiti.

Cryptosporidiosis

Cause: Various species of the protozoan Cryptosporidium, which form resistant oocysts.

Illness and treatment: Symptoms may be prolonged and include watery diarrhea, abdominal pain, nausea, vomiting, weight loss and fever. An anti-protozoal drug is available for persistent symptoms.

Sources: Cryptosporidia are common in animals. In this country oocysts are found in most surface waters tested. Transmission is by ingesting fecally contaminated water, milk or food, or by direct contact with infected animals or humans. Those with asymptomatic infections may infect others. Outbreaks have occurred in water parks, swimming pools and child care facilities.

Additional risks: For persons with weakened immune systems, especially those with advanced HIV infection, the disease can be severe and persistent. Cryptosporidia resist standard chemical disinfectants and may occur in municipal water systems, home filtered water, or bottled water.

Prevention: Wash hands thoroughly after using the toilet or contact with animals, particularly calves or animals with diarrhea. Avoid swallowing water during water recreation. Do not drink untreated surface water. Boil untreated drinking water for one minute or use other appropriate water treatment.

Recent Washington trends: After an increase in case reporting during 2005, following changed treatment and diagnostic practices, case rates have stabilized to between 88 and 139 cases per year.

2013: 84 cases were reported (1.2 cases/100,000 population).

Cyclosporiasis

Cause: Protozoan Cyclospora cayetanensis.

Illness and treatment: Symptoms include persistent watery diarrhea, nausea, loss of appetite, abdominal pain, fatigue and weight loss. Antibiotics are available to treat persistent symptoms.

Sources: Cyclospora are common in many developing countries. Transmission occurs through ingestion of contaminated water or food, often fresh fruit or vegetables. Outbreaks in the United States have been attributed to imported produce such as raspberries, basil and lettuce. Tests for Cyclospora must be specifically requested at many diagnostic laboratories in addition to O&P testing.

Additional risks: Diarrhea may persist with immunosuppression.

Prevention: Wash produce thoroughly before it is eaten. If traveling to risk areas, consult with a travel clinic or the CDC Travelers' Health website.

Recent Washington trends: Most years 0 to 11 cases are reported, mainly after international travel.

2013: No cases were reported.

Diphtheria

Cause: Toxigenic strains of the bacterium Corynebacterium diphtheriae.

Illness and treatment: Classic diphtheria is an upper-respiratory tract illness characterized by sore throat, low-grade fever, and an adherent membrane of the tonsil(s), pharynx, and/or nose, sometimes with neck swelling. Diphtheria can involve almost any mucous membrane and may also be cutaneous. Treatment is with antitoxin, antibiotics, and supportive care.

Sources: Humans carriers are the reservoir but may be asymptomatic. Transmission is by respiratory droplets, but may occur from skin lesions or articles soiled with discharges from an infected person.

Additional risks: Susceptible travelers to areas where routine immunization is lacking are at higher risk for diphtheria infection, especially if an epidemic is in progress.

Prevention: Universal immunization including booster doses prevents infection. Respiratory and hand hygiene prevent transmission.

Recent Washington trends: The last recorded case was in 1981.

2013: No cases were reported.

Giardiasis

Cause: Protozoan Giardia lamblia, also known as G. intestinalis or G. duodenalis.

Illness and treatment: Infection may be asymptomatic or may cause diarrhea, abdominal pain, nausea, fatigue, and weight loss. Illness may be self-limited or be prolonged with persistent pale and greasy stools due to fat malabsorption. Anti-protozoal drugs are available.

Sources: Humans and both wild and domestic animals are reservoirs. Exposures include untreated surface water, shallow well water, recreational water, or, less commonly, food contaminated by feces. Person-to-person transmission occurs, such as in child care facilities or by oral-anal sexual contact.

Additional risks: Children under 5 years of age are infected more frequently than adults. Concentrations of chlorine used in routine water treatment may not kill *Giardia* cysts, especially if the water is cold. Giardiasis is one of the most common waterborne diseases in the country.

Prevention: Wash hands thoroughly after using the toilet or contact with animals, particularly animals with diarrhea. Avoid swallowing water during water recreation. Do not drink untreated surface water. Boil untreated drinking water for one minute or use other appropriate water treatment.

Recent Washington trends: Reported cases have been declining somewhat over the past decade. Incidence is highest in the summer and fall months. Most frequently reported exposures include recreational water and international travel. Outbreaks are uncommon.

2013: 548 cases were reported (8.0 cases/100,000 population).

Gonorrhea

Cause: Bacterium Neisseria gonorrhoeae.

Illness and treatment: Many women and some men have no symptoms with infection. When symptoms occur, urethral discharge and painful urination are typical of genital infections.

Complications include pelvic inflammatory disease in women, producing a risk of infertility, or

epididymitis in men. There can be conjunctivitis, pharyngitis, proctitis, or rarely sepsis. Due to increasing drug resistance, treatment with two antibiotics is recommended. Treated patients should be retested in 3 months or when they next present for medical care.

Sources: Gonorrhea is sexually transmitted or may be acquired at birth.

Additional risks: Disease rates are highest among men and sexually active younger adults. Perinatal infection can result in neonatal conjunctivitis or sepsis.

Prevention: Use safe sexual practices to reduce transmission. Screening to detect asymptomatic patients is only recommended for women at increased risk for infection. If gonorrhea is found, also test for other sexually transmitted infections including HIV. Test and treat all recent sexual partners of a person diagnosed with gonorrhea to stop ongoing transmission.

Recent Washington trends: Recently over 3,000 cases were reported each year.

2013: 4,390 cases were reported (63.8 cases/100,000 population).

Haemophilus influenzae (Invasive Disease, Under Age 5 Years)

Cause: Bacterium *Haemophilus influenzae*. Invasive disease due to any of the 6 capsular types, including type b (Hib), in a child under 5 years of age is reportable.

Illness and treatment: Invasive syndromes can include meningitis, bacteremia, epiglottitis, pneumonia, or bone and joint infections. Symptoms of meningitis include fever, headache, stiff neck, vomiting, light sensitivity and confusion. About 10% of cases surviving *H. influenzae* meningitis have permanent neurological damage; however, among cases surviving meningitis due to Hib, 15-30% have hearing impairment or permanent neurologic damage. Treatment is with antibiotics.

Sources: Humans, including asymptomatic carriers, are the reservoir. Transmission is through respiratory droplets or direct contact with respiratory secretions.

Additional risks: Unimmunized or underimmunized infants and children are at risk for Hib, especially when they are taken into crowded settings.

Prevention: Immunize all infants to prevent *H. influenzae* type b infection. Respiratory and hand hygiene reduces transmission of all serotypes.

Recent Washington trends: 4 to 13 cases (due to all serotypes) are reported annually in children less than 5 years of age. Among 60 cases reported in this age group during 2005 through 2013, only 10 (16.7%) were due to serotype B (Hib). In both Washington and nationwide, there has been a recent increase in the proportion of isolates from invasive disease cases that are non-typeable over the past decade.

Year	Total	Not tested	В	non-B	Not typeable	%В	% Not typeable
2005	5	1	1	3	0	20%	0%
2006	5	0	1	3	1	20%	20%
2007	6	0	3	2	1	50%	17%
2008	2	0	0	0	2	0%	100%
2009	9	3	1	3	2	11%	22%
2010	10	0	0	3	7	0%	70%
2011	8	0	1	3	4	13%	50%
2012	4	0	1	1	2	25%	50%
2013	11	0	2	2	7	18%	64%
Total	60	4	10	20	26	17%	43%

Table 1. Number of *H. influenzae* cases among children <5 years old by serotype,

Washington State, 2005-2013

2013: Eleven cases in children under 5 years were reported with no deaths.

Hantavirus Pulmonary Syndrome (HPS)

Cause: Sin Nombre virus in western United States, other viruses elsewhere.

Illness and treatment: Fever and mild flu-like symptoms are followed by acute respiratory distress syndrome (ARDS) with respiratory failure and shock. Treatment is supportive.

Sources: The deer mouse (*Peromyscus maniculatus*) is the major reservoir for Sin Nombre virus. Exposure occurs by inhaling aerosolized virus excreted in mouse urine, feces or saliva, particularly during improper cleaning of deer mouse infested areas.

Prevention: Keep rodents out of the home and workplace. When cleaning rodent-infested areas, use appropriate safety precautions.

Recent Washington trends: Since the recognition of hantavirus in 1993, 45 cases were reported through 2012 with 16 (36%) associated deaths (including a retrospectively identified case from 1985). In recent years there are usually 1 to 3 cases, predominantly exposed in eastern counties.

2013: No cases were reported.

Hepatitis A

Cause: Hepatitis A virus.

Illness and treatment: Onset is usually abrupt with fever, nausea, and abdominal pain followed by jaundice. Cases may be asymptomatic, particularly in children. Almost all cases recover but rare infections are fatal or require liver transplantation. Treatment is supportive.

Sources: Acutely infected humans shed virus in the feces and transmit directly (fecal-oral spread) or through fecally contaminated food (produce, shellfish, uncooked items), water, and environment, often encountered during international travel. Recent outbreaks in this country have been associated with imported produce. Bloodborne transmission is very rare.

Additional risks: Infected young children may have no symptoms but can be communicable. Transmission can occur within groups having poor hygiene or fecal-oral sexual practices.

Prevention: To prevent infection, immunize all children and any adults with risks for exposure, including travel to endemic areas.

Recent Washington trends: Since 1989 when there were 3,273 cases, with increased vaccination hepatitis A incidence has decreased to fewer than 100 cases a year.

2013: 45 cases (0.7 cases/100,000 population) were reported with one death. Ten cases were travel-related, with four cases associated with travel to Mexico, two to South America, two to India, one to Ethiopia, and one to Iraq.

Hepatitis **B**

Cause: Hepatitis B virus.

Illness and treatment: <u>Acute infection</u> may be asymptomatic or have abrupt onset with fever, abdominal pain, and jaundice. <u>Chronic infection</u> is typically asymptomatic until complications such as liver damage or cancer develop after decades. <u>Surface antigen positivity (contagious) during pregnancy</u> from acute or more typically chronic infection gives a risk of transmitting the virus during delivery. <u>Perinatal infection</u> is typically asymptomatic but infants infected at birth carry a high risk for later complications. A specialist can determine treatment options for hepatitis B virus infections.

Sources: Transmission is by contact with the blood, semen or vaginal secretions of an infected person, and can occur with minor exposures or during childbirth.

Additional risks: After acute infection, about 30% of children under 5 years will become chronically infected compared to about 5% of adults. Infants born to surface antigen positive women are at extremely high risk (90%) of becoming chronically infected, and for developing later complications including liver cancer.

Prevention: To prevent infection, routine Hep B immunization of all infants and children is recommended starting at birth. Adults at high risk are also recommended to get Hepatitis B vaccine, including household and sexual contacts, healthcare workers, men who have sex with men, persons with HIV infection, and adults with diabetes aged 19-59 years. The vaccine can also be administered during pregnancy to those at risk. Routine testing is recommended for those born in Asia, Africa, and other regions with $\geq 2\%$ prevalence of chronic infections. For infants born to hepatitis B positive women, Hepatitis B vaccine and one dose of hepatitis B immune globulin (HBIG) administered within 12 hours after birth are 85-95% effective in preventing both acute HBV infection and chronic infection.

Recent Washington trends: Since 1987 when there were 1,126 acute cases, hepatitis B incidence has recently decreased to fewer than 50 acute cases per year with increased vaccination. Each year 1,000 to 1,400 cases of chronic hepatitis B are reported with about one death a year due to fulminant infection. Current chronic hepatitis reports are posted at: <u>http://www.doh.wa.gov/Portals/1/Documents/Pubs/150-028-</u> <u>ChronicHepatitisBandCSurveillanceReport.pdf</u>. Between 2005 and 2012 (the most recent year for which complete data are available) 2,734 babies were born to HBsAg positive women and reported to local health jurisdictions (annual range: 317-377). For 2,684 (98%) of these babies preventive treatment was initiated within one day of birth. During this same time period only 17 infants who received all recommended treatment and follow-up testing developed chronic hepatitis B infections.

2013: 34 acute cases (0.5 cases/100,000 population) and one death were reported; among 350 infants born to surface antigen positive women three perinatal infections were reported.

Hepatitis C

Cause: Hepatitis C virus, which has 6 genotypes.

Illness and treatment: Most <u>acute infections</u> are asymptomatic but about 20% of cases have abrupt onset with fever, abdominal pain, and jaundice. <u>Chronic infection</u> is typically asymptomatic until complications such as liver damage or cancer develop after decades. A specialist can determine treatment options for hepatitis C virus infections.

Sources: Transmission is usually by contact with blood, particularly while sharing drug paraphernalia, or less commonly with semen or vaginal secretions of an infected person.

Additional risks: Chronic infection follows acute infection in 75-85% of cases and is more likely for males, those infected after 25 years of age, or the immunosuppressed including HIV co-infection.

Prevention: Use safe sexual practices, avoid sharing drug paraphernalia, and screen blood and tissue products to prevent transmission. Routine testing is recommended for those with any bloodborne transmission risk and once for those born 1945-1965.

Recent Washington trends: Each year fewer than 30 acute cases and around 5,700 chronic cases are reported. Current chronic hepatitis reports are posted at: <u>http://www.doh.wa.gov/Portals/1/Documents/Pubs/150-028-</u> <u>ChronicHepatitisBandCSurveillanceReport.pdf</u>.

2013: 63 acute cases (0.9 cases/100,000 population) were reported, including one case exposed perinatally. 45 of 54 cases interviewed had injection drug use as a risk factor.

Hepatitis D or E

Cause: Hepatitis D virus and hepatitis E virus. Hepatitis D virus infection always occurs with hepatitis B infection, either with a chronic hepatitis B infection (superinfection) or as two simultaneous new infections (coinfection).

Illness and treatment: Hepatitis D and E typically have abrupt onset of fever, nausea, and abdominal pain followed by jaundice. Hepatitis D may progress to chronic hepatitis.

Sources: Humans are the reservoir for hepatitis D, which is usually transmitted by blood or body fluids, particularly shared drug paraphernalia. Humans and animals (swine) are the reservoirs for hepatitis E, which is transmitted most commonly through fecally contaminated food and water.

Additional risks: Pregnant women have higher risk for hepatitis E complications. Japan has reported more virulent hepatitis E strains.

Prevention: To avoid hepatitis B infection, immunize all infants and children as well as any adult with risks for exposure. Use safe sexual practices, avoid sharing drug paraphernalia, and screen blood and tissue products to prevent hepatitis D transmission. Use precautions while traveling to ensure safe food and water to avoid hepatitis E infection.

Recent Washington trends: Reports are rare. Cases of hepatitis D are typically associated with injection drug use. Cases of hepatitis E are typically travel associated.

2013: One case of hepatitis E was reported associated with travel to Afghanistan.

Herpes Simplex, Initial Genital and Neonatal

Cause: Herpes simplex virus serotypes HSV-1 and HSV-2.

Illness and treatment: Genital infection is life-long, ranging from no symptoms to recurring episodes of mild to painful genital ulcers. Antiviral medications partially control the frequency and severity of the episodes but are not a cure. Neonatal infection may be severe, involving the liver or brain; or mild, involving the skin, eyes, and mouth.

Sources: Herpes infection is sexually transmitted or acquired at birth.

Additional risks: Disease rates are higher in younger women.

Prevention: Use safe sexual practices to reduce transmission. During the third trimester, pregnant women without herpes should abstain from sexual contact with partners known or suspected of having herpes.

Recent Washington trends: Recently about 2,000 cases reported each year.

2013: 2,207 cases of initial genital HSV infection (32.1 cases/100,000 population) and 4 cases of neonatal infection were reported.

HIV/AIDS

Cause: HIV disease is caused by the human immunodeficiency virus (HIV). After HIV enters the body, it infects and kills white blood cells (CD4+ T-cell lymphocytes). This weakens the body's immune system, and can eventually cause a person to develop Acquired Immune Deficiency Syndrome (AIDS).

Illness and treatment: AIDS is defined by a person's CD4+ T-cell count being below 200 cells/mL and/or the existence of one or more of a broad range of opportunistic illnesses that are specific to HIV disease. The presence of AIDS is usually an indication that a person has been infected with HIV for many years.

Sources and spread: HIV enters the body as a result of direct contact with blood, semen, vaginal fluid, or breast milk from a person with HIV infection. Most HIV cases are the result of unprotected sex with an HIV-positive partner.

Additional risks: Groups at increased risk for HIV include injection drug users, people who use illegal stimulants such as methamphetamines or cocaine, people who have concurrent sexual relationships, and people recently diagnosed with other sexually-transmitted infections.

Prevention: Wear condoms during sex. Use clean needles and other equipment used to inject drugs. Do not have a sexual relationship with more than one person at a time.

Recent Washington trends: Statewide, annual HIV case counts have gradually declined over the past several years. Between 450 and 500 people are newly diagnosed with HIV infection each year. About one in three cases is diagnosed late in the course of his or her HIV illness, or develops AIDS within 12 months of HIV diagnosis. HIV rates are highest among gay and bisexual men, as well as racial or ethnic minorities.

2013: 470 cases were reported (6.8/100,000 population).

Legionellosis

Cause: Bacteria in the genus *Legionella*, commonly *L. pneumophila* serogroup 1 but also other serogroups or other species such as *L. micdadei*, *L. bozemanii*, and *L. longbeachae*.

Illness and treatment: There are two clinically and epidemiologically distinct illnesses. <u>Legionnaires' disease</u> presents with fever, muscle aches, cough, and pneumonia. <u>Pontiac fever</u> is a milder illness without pneumonia. Treatment is with antibiotics.

Sources: The organism is ubiquitous. Hot water systems (showers), air conditioning cooling towers, evaporative condensers, humidifiers, whirlpool spas, respiratory therapy devices, decorative fountains, and potting soil have been implicated epidemiologically in outbreaks.

Additional risks: Illness is more common with age over 50 years, smoking, diabetes, chronic lung disease, or immunosuppression (particularly due to corticosteroids or organ transplant).

Prevention: Maintain cooling towers properly. Do not use tap water in respiratory therapy devices.

Recent Washington trends: The number of cases each year varies from less than ten to over 50; each year, there are generally one to five deaths.

2013: 52 cases (0.8 cases/100,000 population) were reported with 5 deaths.

Leptospirosis

Cause: Spiral shaped bacteria (spirochetes) in the genus Leptospira.

Illness and treatment: Symptoms include fever, headache, and severe muscle aches. Jaundice, kidney failure, or meningitis can develop. Treatment is with antibiotics.

Sources: The disease affects wild and domestic animals, including pets. Urine and tissues are infective. Transmission occurs by skin or mucous membrane contact with urine or tissues from an infected animal or exposure to contaminated water, food, or soil, or inhalation of aerosolized fluids during recreational activities or farm work.

Prevention: Avoid contact with urine from infected animals and with water or soil potentially contaminated with animal urine.

Recent Washington trends: Generally 0 to 5 cases are reported. Most infections relate to recreational water exposure in Washington or during travel.

2013: No cases were reported.

Listeriosis

Cause: Bacterium Listeria monocytogenes.

Illness and treatment: Symptoms depend on the host. Immunocompromised, neonatal, and elderly persons usually present with sepsis and meningitis. In pregnant women, listeriosis may cause a flu-like illness (i.e., fever, head-ache, and muscle aches) and may cause miscarriages, preterm births, or stillbirths. Immunocompetent persons may have acute febrile gastroenteritis. While diarrhea can occur, standard stool culture methods usually do not detect *Listeria*. Severe infections are treated with antibiotics.

Sources: The organism occurs in soil, water, and the intestines of animals and humans. Transmission is mainly through food, such as unpasteurized milk, cheese, processed meats, deli salads, fruits and vegetables. Food can be contaminated during or after processing.

Additional risks: Unlike most foodborne pathogens, *Listeria* can multiply in refrigerated foods. Illness may be severe for newborns, the elderly, and persons with weakened immune systems. Pregnant women with listeriosis may have few symptoms but have fetal loss or premature birth.

Prevention: If pregnant or immunocompromised, avoid soft cheeses made with unpasteurized milk, processed ready-to-eat foods, and smoked fish. Thoroughly cook all foods from animal sources, wash raw produce thoroughly, and heat leftovers, hot dogs and deli meats until steaming before eating.

Recent Washington trends: Each year there are 11 to 29 reports with 0 to 5 deaths.

2013: 21 cases were reported (0.3 cases/100,000 population) with one death.

Lyme Disease

Cause: Spiral shaped bacterium (spirochete) Borrelia burgdorferi.

Illness and treatment: The classic symptom is erythema migrans, a target-shaped (bull's-eye) rash. Systemic symptoms, such as fatigue, headache, fever, and muscle and joint aches also typically occur in early illness. Joint, nervous system, or heart complications can occur.

Sources: Only certain hard tick species transmit Lyme disease from the rodent or deer reservoirs. In the Pacific coastal United States, the western blacklegged (or deer) tick (*Ixodes pacificus*) is the primary vector. These ticks live in heavily-forested or dense brushy areas, not open areas. It is likely these ticks must attach for at least 24 hours to transmit the disease.

Prevention: During outdoor activities in endemic areas avoid tick bites by wearing appropriate clothing and using repellents. Check the body for ticks. If bitten by a tick, be alert for rash, fever, facial paralysis, or joint pain over the next month. If symptoms develop, see a health care provider.

Recent Washington trends: Each year there are 7 to 23 reports. Most Washington cases are the result of a tick bite out-of-state. The few endemic cases have tick exposures predominantly on the west side of the Cascade Mountains, reflecting the distribution of the *Ixodes* ticks.

2013: 19 cases (0.3 cases/100,000 population) were reported.

Malaria

Cause: Plasmodium species, commonly P. vivax, P. falciparum, P. ovale, and P. malariae.

Illness and treatment: Classic malaria involves recurrent bouts of fever, chills, sweats, and headache. Many other symptoms can occur, affecting the gastrointestinal, respiratory, muscular, and neurological systems. Treatment is with antimalarial drugs and supportive care.

Sources: Transmission occurs by the bite of infected anopheline mosquitoes.

Additional risks: Although rarely seen in the United States, transmission can occur through blood contact (e.g., transfusions or needle-sharing).

Prevention: When traveling in risk areas avoid mosquito bites, take medication to avoid malaria, and receive proper treatment if infected.

Recent Washington trends: Each year there are 20 to 40 reports among tourists, military personnel, business travelers, mission workers, immigrants and refugees. Report a first diagnosis in this country.

2013: 30 cases (0.4 cases/100,000 population) were reported. 17 were *P. falciparum*, 4 *P. vivax*, 2 *P malariae*, 3 *P. ovale*, 1 co-infection with both *P.falciparum* and *P. ovale*, and 3 were unknown *Plasmodium* species. Travel exposures were mainly to Africa.

Measles

Cause: Measles virus, family Paramyxoviridae, genus Morbillivirus.

Illness and treatment: Typical measles includes a 2–4 day prodrome that includes fever up to 105° F and cough, conjunctivitis, or runny nose, followed by a maculopapular rash which typically starts at the hairline and extends downward to cover the entire body. The rash lasts 5–6 days or longer. Complications are more common among children under 5 and adults over 20 years of age and can include diarrhea, ear infection, pneumonia, acute encephalitis, and even death. Rarely, measles can occur in a person known to have received a vaccination for measles. The illness in these cases may not be typical. The case fatality rate for measles in this country is 0.1-0.3% but higher in parts of the world with poor nutrition and limited access to health care. Treatment is supportive.

Sources: Humans are the reservoir. Measles is highly contagious with transmission occurring primarily through respiratory droplets, though airborne transmission has been documented in closed areas for up to 2 hours after a person with measles was present.

Additional risks: Measles in the United States is mainly related to international travel by susceptible persons to countries where measles is endemic or where outbreaks are occurring. Transmission to additional persons that are not vaccinated can occur leading to outbreaks. In developing countries, malnutrition increases the risk of severe complications and death.

Prevention: Universal immunization prevents infection. Aggressive follow-up with exposed persons, along with respiratory hygiene and isolation of contagious individuals, can prevent further transmission.

Recent Washington trends: Each year there are typically fewer than 5 cases reported, although outbreaks with 7-19 cases occurred in Washington in 2001, 2004, and 2008.

2013: Four cases (0.1 case/100,000 population) were reported.

Meningococcal Disease (Invasive)

Cause: *Neisseria meningitidis*, mainly serogroups B, C, Y, and W135 in the United States, and serogroup A elsewhere. Invasive disease is reportable.

Illness and treatment: Invasive meningococcal disease most commonly manifests as meningitis with symptoms of fever, headache, stiff neck, vomiting, light sensitivity and confusion, and bloodstream infections (meningococcemia), which causes fever and septic shock as well as a rash or bruise-like skin lesions and often leads to severe outcomes such as permanent disability or death. A person may have both syndromes. Pneumonia and joint infections can also occur. Even with appropriate antibiotic treatment and supportive care, overall case fatality rate for invasive disease is 9-12%.

Sources: Humans, including asymptomatic carriers, are the reservoir. Transmission is through respiratory droplets or direct contact with respiratory secretions. Secondary cases are rarely documented, though outbreaks can occur.

Additional risks: Rates are highest for infants under 12 months. An increasing proportion of cases are in adolescents and young adults. Crowded living conditions such as dormitories, recent history of an upper respiratory illness, and tobacco smoke exposure may increase risk, as do certain immune deficiencies including asplenia.

Prevention: Universal immunization is recommended for all adolescents aged 11–18 years and some persons aged 2–55 years at increased risk for this disease (e.g., persons with HIV, complement disorder or asplenia, and microbiologists and travelers at prolonged increased risk for disease exposure). Prophylactic antibiotics are usually advised for persons with recent close contact with a confirmed case. Good respiratory hygiene can reduce transmission.

		Not						% Vaccine	
Year	Total	Tested*	В	С	Y	W135	Other	serogroup	% B
2005	34	3	20	6	5	0	0	32%	59%
2006	43	8	19	9	7	0	0	37%	44%
2007	28	1	13	4	10	0	0	50%	46%
2008	31	3	11	5	9	2	1	52%	35%
2009	25	2	13	2	8	0	0	40%	52%
2010	29	2	7	7	12	1	0	69%	24%
2011	22	0	12	2	7	1	0	45%	55%
2012	24	0	9	4	8	0	3	50%	38%
2013	20	3	9	2	3	2	1	35%	45%
Total	256	22	113	41	69	6	5	45%	44%

Table 2. Number of meningococcal disease cases by serogroup, Washington State, 2005-2013

2013: 20 cases (0.3 cases/100,000 population) were reported with three deaths.

Mumps

Cause: Mumps virus, a paramyxovirus.

Illness and treatment: Mumps causes inflammation of glandular tissue, most commonly the salivary glands (parotitis occurs in 30-40% of infected persons). Up to 20% of infections have no symptoms and an additional 40-50% has mild, nonspecific, or primarily respiratory symptoms. Complications include inflammation of testes (orchitis) or ovaries (oophoritis), encephalitis or aseptic meningitis (occasionally resulting in deafness), pancreatitis, and myocarditis. Treatment is supportive.

Sources: Humans, including persons with asymptomatic infection, are the reservoir. Transmission is mainly through direct contact with infected respiratory droplets or saliva.

Additional risks: The average age of reported mumps cases has gradually increased, with 40% of cases now occurring in persons 15 years of age and older. A large outbreak of mumps occurred in 2006 in 9 Midwestern states; the majority of cases were college-aged persons and adults in their 20s. Another outbreak in 2009-10 involved a religious community with many of the cases in immunized adolescent males who attended private schools and spent many hours face to face each day.

Prevention: Recommendations for universal childhood immunization have greatly reduced the number of infections. Two doses of mumps-containing vaccine are now recommended for school aged-children, college students, and health care workers born in or after 1957. Respiratory and hand hygiene can also reduce transmission.

Recent Washington trends: Between 1992 and 2005 the rate of reported mumps infections was up to 0.5 per 100,000 persons (0-26 cases per year). Due to the increased awareness of mumps following the 2006 outbreak in the Midwest, 42 and 53 cases were reported in 2006 and 2007, respectively. A change in the national reporting criteria was made in 2008 and the rate of reported mumps returned to pre-2006 levels.

2013: Two cases were reported.

Pertussis

Cause: Bacterium Bordetella pertussis.

Illness and treatment: Classic pertussis symptoms include initial cold-like manifestations followed by an extended cough illness with spasms of severe coughing (paroxysms) that may be followed by a gasp, whoop, or vomiting and which can last for weeks. Infants with pertussis may have feeding difficulties and often become apneic. Treatment is with antibiotics and supportive care.

Sources: Humans. Older adolescents and adults with mild symptoms not recognized as pertussis are often the reservoir. Pertussis is transmitted through respiratory droplets or direct contact.

Additional risks: Complications, which occur most often in very young infants, can include pneumonia, seizures, encephalopathy and death.

Prevention: Recommended universal childhood immunization with a booster dose for adolescents and adults can reduce the risk of infection and generally prevents severe illness in most age groups. Very young infants (under 2 months of age) too young to be immunized can be protected by vaccinating the mothers during the last trimester of pregnancy, as well as assuring that others who will have close contact with the infant have been vaccinated. Respiratory and hand hygiene can reduce transmission. Any person with a cough illness should avoid contact with pregnant women and young infants.

Recent Washington trends: The number of cases reported each year varies considerably, ranging from 184 to 4,916 (during the 2012 outbreak) cases a year since 1995. There is also variation in the rate of reported disease among health jurisdictions, reflecting local outbreaks.

2013: 748 cases (10.9 cases/100,000 population) were reported.

Plague

Cause: Bacterium Yersinia pestis.

Illness and treatment: Plague causes three clinical syndromes: <u>bubonic</u> (fever, headache, nausea and unilateral lymph node swelling); <u>septicemic</u> (bacteremia and multi-organ system failure); and <u>pneumonic</u> (pneumonia). A patient may have several syndromes. About 11% of plague cases in the United States are fatal. Treatment is with antibiotics and supportive care.

Sources: Wild rodent populations are the natural reservoir where plague is maintained by fleas. Humans are infected through flea bites, handling tissues from infected animals, or respiratory droplet spread from animals or people with pneumonic plague.

Prevention: Avoid contact with sick or dead wild animals, rodent-proof houses, prevent pets from contracting fleas, and use repellents on skin and clothing when outdoors.

Recent Washington trends: Testing of 8,139 wildlife (mostly coyote) serum specimens collected July 1975 – July 2011 in Washington found 226 (2.8%) seropositive, a measure of previous exposure, not necessarily current disease. Human infections are rare. The last reported case was an animal trapper in Yakima exposed while skinning a bobcat in 1984. In neighboring Oregon, 5 people have been diagnosed with plague between 2010 and 2012, along with and a positive cat in 2012.

2013: No human cases of plague were reported.

Polio

Cause: Poliovirus, a member of the enterovirus subgroup, family Picornaviridae. Three serotypes, P1, P2, and P3 (and the related live oral vaccine strains), can cause disease.

Illness and treatment: Over 90% of infections are asymptomatic and 4-8% result in only minor illnesses. Non-paralytic aseptic meningitis with full recovery occurs in 1-2% of infections. Less than 1% of infections result in flaccid paralysis. Treatment is supportive.

Sources: Humans are the reservoir. Transmission is mainly through the fecal-oral route. Virus may be present in the stool of an infected person for 3-6 weeks.

Additional risks: Travel by susceptible persons to the few countries where polio is still endemic or to countries still routinely using oral polio vaccine can increase the risk of becoming infected.

Prevention: Universal childhood immunization prevents infection. Only inactivated polio vaccine – which can prevent paralysis, but does not provide intestinal immunity – is now used in this country.

Recent Washington trends: The last naturally acquired infection with wild-type polio virus was in 1977. In 1993, a case of vaccine-associated paralytic polio occurred in a state resident after a family member received live oral polio vaccine (which is no longer used in the United States).

2013: No cases were reported.

Psittacosis

Cause: Bacterium Chlamydophila (previously Chlamydia) psittaci.

Illness and treatment: Abrupt onset of fever, chills, headache, and nonproductive cough which may progress to shortness of breath and pneumonia. Treatment is with antibiotics.

Sources: Birds in the parrot family are common sources, with poultry, pigeons, canaries, and sea birds being less common sources. Infection usually occurs when a person inhales organisms excreted in aerosolized dried feces or respiratory tract secretions of infected birds.

Prevention: Avoid purchasing or selling birds that appear ill, practice preventive husbandry, and wear protective clothing when cleaning cages or handling infected birds. If respiratory or influenza-like symptoms occur after bird caretaking, seek medical attention and report bird contact.

Recent Washington trends: Each year there are 0 to 4 reports commonly associated with indoor exposure to pet birds and less commonly farm or wild birds.

2013: No cases were reported.

Q Fever

Cause: Bacterium Coxiella burnetii.

Illness and treatment: Acute Q fever symptoms are fever, cough, chills, retrobulbar headache, malaise, weakness, and severe sweats. Chronic Q fever manifests primarily as endocarditis. Treatment is with antibiotics.

Sources: The most common reservoirs are sheep, cattle, and goats. Infected animals are usually asymptomatic; they shed the organism in highest concentration in birthing products but also in urine, feces, and milk. A common exposure mechanism is inhalation of dust from premises contaminated by placental tissues, birth fluids, or excreta of infected animals.

Additional risks: Pregnant women, persons with pre-existing heart valvulopathies, and immunosuppressed persons are at increased risk of developing chronic infection.

Prevention: Consume only pasteurized milk and dairy products. Appropriately dispose of animal birth products. Restrict access to barns and facilities housing potentially infected animals. Compost manure in a covered area instead of spreading it in fields. Persons with risk factors should not assist in animal birthing. Limit visitors during kidding season and advise them about high risk groups.

Recent Washington trends: In most years there are 0 to 3 cases. A notable exception occurred in 2011, when 8 cases were linked to a goat-associated outbreak.

2013: Three cases were reported.

Rabies (Human)

Cause: Rabies virus.

Illness and treatment: Initial neurologic symptoms include abnormal skin sensation or pain, often affecting the site of the bite, and subtle personality changes. Later neurologic symptoms include seizures, excess salivation, fear of water, delirium, agitation, and paralysis. Symptomatic illness is considered to be universally fatal with a few notable exceptions: experimental treatment in this country saved one young girl in Wisconsin (2005); Texas reported a case of presumptive abortive human rabies (2009); and California reported a recovery of a patient with clinical rabies (2011).

Sources: In Washington, bats are the primary reservoir. Skunks, raccoons and foxes are additional reservoirs elsewhere in this country. In some countries, dogs and other carnivores are the main reservoirs. Rabies is most often transmitted via a bite from a rabid animal, but can also be spread if saliva or other infectious material (e.g., brain tissue) contaminates broken skin or mucosa. Person- to-person transmission is documented only by tissue/organ transplantation.

Prevention: Obtain post-exposure prophylaxis for exposure to a rabid or potentially rabid animal. Certain high risk groups should have pre-exposure vaccination. Keep vaccinations up-to-date for all dogs, cats and ferrets, avoid contact with unfamiliar animals, and keep bats out of the home.

Recent Washington trends: Two human cases due to infection with the bat rabies variant of rabies virus were reported in the past 50 years, one in 1995 and one in 1997.

2013: No human rabies cases were reported.

Rabies, Suspected Human Exposure

Information about rabies post-exposure prophylaxis (PEP) is available from the Advisory Committee on Immunization Practices available from CDC (<u>www.cdc.gov/rabies/</u>). Also see Rabies (Human).

Recent Washington trends: In previous years PEP administration was tracked, with typically 240-290 persons receiving PEP per year. A WAC revision in February 2011 changed this condition to "suspected rabies exposure" which should include all PEP as well as instances where PEP was advised but declined by patient. Of bats tested in Washington, 5 to 10% are identified as rabid. Since 1987, only 4 rabid domestic animals have been identified, 2 with bat variant virus (Table 1).

2013: There were 287 reports of suspected rabies exposure. The most common exposures were bats (81%), dogs (10%), and raccoons (4%). 12 out of 284 (4%) of bats tested were rabid (Table 2). No animals tested in Washington were rabid other than bats (Table 3).

Year	Animal type (County)	Rabies strain
2002	Cat (Walla Walla)	Bat-variant
1994	Llama (King)	Bat-variant
1992	Horse (Franklin)	Unknown
1987	Dog (Pierce)*	Unknown, but history of bat exposure

Table 3. Rabid Non-Bat Animals and Rabies Strains, Washington State, 1987–2013

* Infection was not confirmed at CDC

	200	9	201	0	20	11	20	12	20	13	Count	y Total
Counties	Positive	Total	Posi-	Tested								
Adams	0	0	0	0	0	1	0	0	0	0	0	1
Asotin	0	0	1	2	0	1	0	0	0	3	1	6
Benton	1	37	0	4	0	0	0	1	0	2	1	44
Chelan	0	1	0	2	1	1	1	13	0	2	2	19
Clallam	0	6	0	1	1	7	0	1	1	6	2	21
Clark	0	10	1	11	0	11	0	9	0	18	1	59
Columbia	0	1	0	0	0	0	0	0	0	0	0	1
Cowlitz	0	12	1	5	0	5	1	3	0	14	2	39
Douglas	0	2	0	1	0	1	0	1	0	0	0	5
Ferry	0	4	1	1	0	1	0	2	0	0	1	8
Franklin	0	0	0	1	0	0	0	1	1	1	1	3
Garfield	0	0	0	0	0	0	0	0	0	0	0	0
Grant	0	1	0	2	0	1	0	3	0	1	0	8
Grays Harbor	1	8	0	0	0	1	1	3	0	1	2	13
Island	1	6	0	6	1	10	1	9	0	10	3	41
Jefferson	1	5	0	2	0	1	0	5	1	4	2	17
King	1	38	2	45	1	45	1	47	4	64	9	239
Kitsap	0	18	1	10	0	15	0	10	1	27	2	80
Kittitas	1	2	1	2	0	0	0	2	1	3	3	9
Klickitat	0	1	0	3	0	1	0	3	0	0	0	8
Lewis	0	13	0	10	1	9	0	9	0	11	1	52
Lincoln	0	0	0	0	0	0	0	0	0	1	0	1
Mason	0	2	0	4	0	2	0	9	0	4	0	21
Okanogan	1	3	0	0	0	0	0	1	0	2	1	6
Pacific	1	4	0	3	0	1	0	7	0	4	1	19
Pend Oreille	0	1	0	0	0	3	0	1	0	0	0	5
Pierce	1	29	1	12	1	10	0	10	0	13	3	74
San Juan	0	2	0	2	0	3	0	2	0	1	0	10
Skagit	1	7	0	5	0	2	1	8	0	5	2	27
Skamania	0	0	0	0	0	0	0	0	0	0	0	0
Snohomish	2	29	3	24	1	15	1	16	0	22	7	106
Spokane	0	19	0	8	0	7	0	9	0	19	0	62
Stevens	1	4	0	4	0	2	0	2	0	6	1	18
Thurston	1	27	2	16	2	37	0	18	0	11	5	109
Wahkiakum	0	2	0	1	0	2	1	1	0	2	1	8
Walla Walla	0	0	0	2	1	1	0	1	0	1	1	5
Whatcom	0	15	0	10	1	5	1	12	3	22	5	64
Whitman	0	1	0	1	0	2	0	0	0	2	0	6
Yakima	0	1	0	0	0	1	0	2	0	2	0	6
Total	14	311	14	200	11	204	9	221	12	284	60	1220

Table 4. Washington State Bats Tested for Rabies, 2009-2013

Table 5. Washington State Animals Tested for Rabies, 1988-2013 (Rabid animals in parentheses)

Year Fat Fat Run Run Run Mid Other Total Total 1988 $6(4)$ 10 15 10 10				obit and pika	s include: ral	agomorph	Ι					* Horse
Year Bat Cat Dag Fer Run Run Lago Other Tago Other 988< $69(4)$ 16 10 15 10 2 2 3 <th>2766 (410)</th> <th>219 (2) 1</th> <th>281</th> <th>23</th> <th>221</th> <th>68</th> <th>255</th> <th>148</th> <th>7</th> <th>(1)</th> <th>6313 (407)</th> <th>1988-2013</th>	2766 (410)	219 (2) 1	281	23	221	68	255	148	7	(1)	6313 (407)	1988-2013
Kear Bar Cat Dog Fer- Ron- Lago- Other Wild Cther Donesic 1988< 69(4) 16 10 15 10 15 10 20 20 1988 69(4) 16 110 15 9 4 3 20 1980 63(4) 104 82 5 1 1 14 3 20 1991 90(9) 103 80 13 13 14 14 3 34 1991 36(1) 103 8 4 8 16 14 3 34 1993 58(14) 106 114 12 8 1 23 34 37 1993 58(13) 104 114 12 3 36 112 34 34 1993 58(13) 104 11 3 11 33 36 34 1993 58(214	3091		Total
Year Bat Fer- bit Fer- bit Fer- bit Fer- bit Fer- bit Rot- bit Run Run Run Run Public Dage Public	459	6	5	0	3	0	13	0	65	80	284 (12)	2013
Year Bat Cat Dag Fer- Skun Ko- Lago- Other Domestic Total 1988 66 (4) 16 10 2 0 3 2 3 3 1988 105 (9) 154 10 2 9 4 8 1 9 4 3 3 1990 63 (4) 164 10 82 5 1 14 4 3 3 1991 79(9) 63 (4) 104 82 3 13 14 3 3 3 1993 68 (1) 122 95 8 4 8 16 1 4 3 3 1993 68 (1) 122 95 8 4 8 16 1 4 3 3 1994 58 (14) 106 12 9 1 1 1 1 1 1 1 3 <t< th=""><td>402</td><td>6</td><td>7</td><td>0</td><td>4</td><td>0</td><td>7</td><td>2</td><td>54</td><td>98</td><td>221 (9)</td><td>2012</td></t<>	402	6	7	0	4	0	7	2	54	98	221 (9)	2012
Year Bat Cat Dag refu- Mor Lago- Other Total Total 9888 06 (4) 10 15 16 3 12 2 5 3 </th <td>368</td> <td>5</td> <td>8</td> <td>0</td> <td>2</td> <td>1</td> <td>6</td> <td>1</td> <td>51</td> <td>87</td> <td>204 (11)</td> <td>2011</td>	368	5	8	0	2	1	6	1	51	87	204 (11)	2011
Year Bat Cat Dage Keu Name Other Vial Other bouncesite Year Point Year Point Year Bat Cat Dage ref Ratcoon k dent moryh Wild Other bouncesite Year Point Year <	407	10	6	1	9	1	14	0	63	103	200 (14)	2010
Year Bat Cat Dag Fer- Act Dag Fer- Model	573	6	7	1	4	5	12	1	90	133	311 (14)	2009
Year Bat Cat Dog ref Sun No Lago Other Wild Other Domesic Total 1988 69 (4) 165 110 15 16 3 12 3 3 3 3 4 3 3 3 4 3 3 3 4 3 3 3 4 3 3 3 4 3 3 3 4 3 3 3 4 3	595	11	9	1	5	2	10	1	76	143	337 (17)	2008
Year Bat Cat Dec Fe- Skun Ro- Lago Other Wild Other Domestic Yoal 1988 $69(4)$ 165 110 15 16 3 12 2 5 5 5 5 5 5 5 5 5 5 3 400 33 400 33 400 33 400 34 9 41 9 5 5 5 5 5 5 5 3 400 33 400 33 40 34 5 5 5 5 5 5 5 5 3 400 33 40 34 3 40 33 40 33 40 3 40 33 40 33 40 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34	581	3	6	0	5	3	16	1	97	132	315 (22)	2007
Year Bat Cat Bat Fer- bit Re- bit Skun Ro- bit Morph Wild Other Domestic Yould	482	5	8	1	2	1	13	4	70	105	273 (15)	2006
Year Bat Cat Dos Fer- Skun Ro- Lago Other Wild Other Domestic 1988 $69(4)$ 165 110 15 101 15 101 15 101 15 101 15 101 15 101 15 101 15 101 15 101 15 101 15 101 15 101 101 101 101 101 101 101 101 101 101 102 102 102 102 102 102 102 102 102 101 102 101 102 101 102 <	480	4	10	1	5	2	12	3	66	132	245 (15)	2005
Year Bat Cat Dog ret Run No Lago Other Total 1988 69(4) 165 110 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 12 1	571	10	6	0	11	9	13	3	70	141	311 (20)	2004
Year Hat Fer- bit Fer	474	10	6	1	7	1	11	0	72	137	229 (23)	2003
Year Bat Cat Bar Fer- Skun Ro- Lago- Other Mag Total 1988 $69(4)$ 165 110 15 166 3 12 9 9 400 1988 $69(4)$ 165 110 15 166 3 12 9 400 1989 102(9) 124 91 20 9 4 8 1 9 9 400 1990 63(4) 104 82 5 7 1 9 4 9 3 3 400 1990 63(4) 104 82 7 5 7 6 7 3 37 1991 90(9) 102 9 16 14 2 36 37 1992 73(6) 112 9 14 2 1 1 37 1993 58(14) 126 14 2	376	6	8	1	6	2	2	7	53	99 (1)	186 (12)	2002
Year Fat- bible Fat- bible Fat- bible Ro- bible Lago- bible Utage bible Cutage bible Fat- bible Total Year Bat Cat Dog ret Raccoon k dent morph Wild Other Domestic Total 1989 102 (9) 124 91 20 9 4 8 1 9 9 400 1989 102 (9) 124 91 20 9 4 8 1 9 9 400 1990 65 (4) 104 82 5 7 5 5 1 14 4 203 1991 90 (9) 105 96 13 8 1 14 1 3 3 1992 58 (1) 125 90 16 14 2 3 3 3 1994 58 (1) 126 9 14 2 14 3 3 3	490	5	4	0	8	1	3	2	93	111	263 (22)	2001
Year Bat Fer- Skun Ro- Lago- Other Niel Total 1988 69(4) 165 110 5 160 7 8 0 10 7 4 000 1	522	4	6	1	9	7	2	1	60	105	330 (23)	2000
Year Bat Cat Fer- Skun Ro- Lago- Other Year Total Year Bat Cat Dog ret Racoon k dent morph Wild Other Domestic 70al 1988 $69(4)$ 165 110 15 10 15 10 3 3 3 3 400 1988 $69(4)$ 165 110 15 9 4 8 12 3 3 400 1990 $63(4)$ 104 82 5 5 5 1 14 3 3 1991 90(9) 105 96 13 90 16 14 2 3 3 3 3 1992 68(1) 102 9 16 14 2 12 3 3 3 3 1993 68(1) 105 9 14 3 16 14 3	561	13	14	1	8	3	11	3	71	103	334 (25)	1999
Year Bat Fer- Fer- Skun Ro- Lago- Other Mode Total Year Bat Cat Dog ret Racoon k den Dog ret Skun Nold Mode Mode Total Pat 1988 $69(4)$ 165 110 15 110 15 110 15 100 102 90 910	743	16	19	0	9	1	11	8	109	126	447 (27)	1998
Year Bat Cat Dog ret Run Ro- Lago- Other Total 1988 $69(4)$ 165 110 15 110 15 110 15 7 3 12 9 400 1988 $69(4)$ 165 110 15 10 15 10 20 3 400 1989 102(9) 124 91 20 4 8 1 9 9 40 1980 63(4) 104 82 5 7 5 5 1 14 4 372 1990 63(4) 104 82 5 7 5 5 1 14 4 290 1991 90(9) 105 96 13 8 3 13 0 14 29 346 1992 68(1) 105 96 14 8 16 14 20 346	1127	11	18	2	15	4	17	7	118	155	780 (51)	1997
Year Bat Cat Dog ret Round Kon Lago Other Mide Total 1988 $69(4)$ 165 110 15 110 15 110 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 10 10 10 10 10 10 10 10 100 102 91 20 90 12 90 12 90 12 90 10 10 10 10 10 10 10 10 10 10 10 10 100 10 10 100 100 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 <	530	12	20	3	14	2	6	8	101	104	257 (13)	1996
Year Bat Cat Poc Lago Lago Other Total Year Bat Cat Dog ret Raccoon k dent morph Wild Other Domestic Total 1988 $69(4)$ 165 110 15 16 3 12 9 4 6 7 6 3 4 6 7 6 3 4 6 7 6 7 6 7 <t< th=""><td>597</td><td>18</td><td>15</td><td>3</td><td>23</td><td>1</td><td>8</td><td>12</td><td>114</td><td>140</td><td>263 (15)</td><td>1995</td></t<>	597	18	15	3	23	1	8	12	114	140	263 (15)	1995
Year Bat Cat Fer- Skun Ro- Lago- Other Total Year Bat Cat Dog ret Racoon k dent morph Wild Other Domestic $70al$ 1988 $69(4)$ 165 110 15 166 3 12 9 400 90 91 20 9 4 8 12 91 20 91 9	312	$14(1)^{\wedge}$	16	0	15	3	4	7	06	105	58 (14)	1994
Year Bat Cat Dog Fer- Skun Ro- Lago- Other Year Bat Cat Dog ret Raccoon k dent morph Wild Other Domestic Total 1988 $69(4)$ 165 110 15 116 15 102 20 312 400 1989 $102(9)$ 124 91 20 9 4 8 11 90 312 90 312 90 12 82 5 5 5 112 90 12 90 102 90 102 90 102 90 102 90 102 90 102 90 102 90 102 90 102 90 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102	346	13	10	2	16	8	4	8	95	122	68 (1)	1993
Year Bat Cat Dog Fer- Skun Ro- Lago- Other Total Year Bat Cat Dog ret Raccoon k dent morph Wild Other Domestic 10al 1989 $69(4)$ 165 110 15 116 3 12 ∞ 3 400 1989 $102(9)$ 124 91 20 9 4 8 1 9 3 3 1990 $63(4)$ 104 82 5 7 5 5 7 9 400 1991 $90(9)$ 105 96 13 8 3 13 0 10 19 20 29 290	359	$6(1)^{*}$	14	0	12	2	14	16	90	132	73 (6)	1992
YearBatCatDogretSkunRo-Lago-OtherTago-YearBatCatDogretRaccoonkdentmorphWildOther Domestic1988 $69(4)$ 16511015116151163129 400 600 610 </th <td>349</td> <td>2</td> <td>19</td> <td>0</td> <td>13</td> <td>3</td> <td>8</td> <td>13</td> <td>96</td> <td>105</td> <td>(6) 06</td> <td>1991</td>	349	2	19	0	13	3	8	13	96	105	(6) 06	1991
YearBatCatDogretRacoonKRo-Lago-Other 1989 $69(4)$ 165 110 15 166 3 12 20 3 12 20 3 1989 $102(9)$ 124 91 20 9 4 8 11 9 4 372	290	4	14	1	5	5	7	5	82	104	63 (4)	1990
YearBatCatDogretSkunRo-Lago-Other198869 (4)1651101516312253400	372	4	6	1	8	4	6	20	91	124	102 (9)	1989
YearBatCatDogretRaccoonkdentMildOther Domestic	400	3	5	2	12	3	16	15	110	165	69 (4)	1988
Fer- Skun Ro- Lago- Other Total		Other Domestic	Wild	morph	dent	k	Raccoon	ret	\mathbf{Dog}	Cat	Bat	Year
	Total		Other	Lago-	R0-	Skun		Fer-				

Rodents include: beaver, chinchilla, chipmunk, degu, gerbil, gopher, hamster, marmot, mouse, muskrat, nutria, porcupine, prairie dog, rat, squirrel, vole, woodchuck

Other wild include: badger, bear, bison, bobcat, cougar, coyote, deer, fox, kinkajou, lynx, marten, mink, mole, monkey/non-human primate, ocelot, opossum, otter, seal, shrew, sugar glider, weasel, wolf, wolfhybrid, zorilla (striped polecat)

Other domestic include: burro, cattle, goat, horse, llama, mule, pig, sheep, zebra

Lagomorphs include: rabbit and pika

20

Rare Diseases of Public Health Significance

Rare diseases of public health significance are defined as diseases or conditions of general public health concern, which are not commonly diagnosed in Washington residents.

African Tick Bite Fever

Cause: Rickettsia africae.

Illness and treatment: Symptoms include fever, skin ulcers and swollen lymph nodes. Treatment is with antibiotics.

Sources: Certain hard tick species transmit the disease from various mammals in sub-Saharan Africa.

Prevention: During outdoor activities in endemic areas, wear appropriate clothing, use repellents and check the body for ticks.

Recent Washington trends: Two state residents were infected in South Africa in 2005 and one in 2008.

2013: One case was reported with travel to South Africa.

Anaplasmosis

Cause: Bacterium called *Anaplasma phagocytophilium*, an organism formerly known as *Ehrlichia phagocytophilium*. The illness was formerly named human granulocytic ehrlichiosis (HGE) but is now human granulocytic anaplasmosis (HGA).

Illness and treatment: Symptoms vary from person to person, but may include fever, headache, muscle pain, malaise, nausua, cough, confusion or rarely rash.

Sources: The black-legged tick *Ixodes scapularis* is the vector in the northeast and upper midwest United States, while the western black-legged tick *Ixodes pacificus* is the primary vector in California and the presumed vector in the Pacific Northwest. The infection may be transmitted via blood transfusion or solid organ transplant.

Prevention: During outdoor activities in endemic areas, wear appropriate clothing, use repellents and check the body for ticks.

Recent Washington trends: Before 2013, the most recent case was reported in 2007.

2013: Two cases, both associated with domestic travel in the midwestern United States.

Anisakiasis

Cause: Nemotodes Anisakis simplex and Pseudoterranova decipiens

Illness and treatment: Also referred to as herring worm disease. Caused by ingestion of raw or undercooked fish or squid. The nematodes attach to the wall of the esophagus, stomach or intestine. Symptoms include tingling of the mouth or throat while eating the infected fish or squid, vomiting, abdominal pain, diarrhea, fever, and allergic reactions including itching and infrequently anaphylaxis. Treatment may require removal of the worm via endoscopy or surgery.

Sources: Undercooked infected fish or squid.

Prevention: Avoid consumption of raw or undercooked fish or squid.

Recent Washington trends: Prior to 2013, no cases reported in WA in the last decade.

2013: Two cases, associated with consumption of raw salmon purchased in Washington and eaten raw at home and the other associated with sushi eaten at a restaurant.

Babesiosis

Cause: Babesia species, including B. microti, B, duncani, and other rare species.

Illness and treatment: Varies, from asymptomatic infection to flu-like symptoms such as fever, chills, sweats and body aches to severe, life-threatening disease in people with underlying conditions. Treatment is based on individual factors.

Sources: Transmitted by bite of the infected *Ixodes scapularis* (black-legged) tick, and may also be transmitted via blood transfusion or from mother to infant during pregnancy or delivery.

Prevention: During outdoor activities in endemic areas, wear appropriate clothing, use repellents and check the body for ticks.

Recent Washington trends: The previous most recent reported case of *B. microti* occurred in 2008, associated with travel to Massachusetts. A few cases of presumed tick-acquired as well as local donor and transfusion-associated *B. duncani* cases were reported in the early 1990s. A *B. divergens*-like infection occurred in 2002.

2013: One case of *B. microti*, associated with travel to Wisconsin.

Burkholderia

Cause: Bacterium Burkholderia pseudomallei (Melioidosis) or Burkholderia mallei (Glanders)

Illness and treatment: Melioidosis is spread to humans (and animals) through direct contact with the contaminated soil or water. Glanders is primarily a disease affecting horses, donkeys, and mules, though it is possible for humans to get the disease. Both diseases may result in four types of infection: localized, pulmonary, bloodstream and chronic. Symptoms vary based on the type of infection. Treatment is with antibiotics.

Sources: Melioidosis is predominately a disease of tropical climates (e.g., Southeast Asia and northern Australia); the bacteria causing melioidosis are found in contaminated water and soil. Contact with the tissue or body fluids of infected animals is the primary route of infection for glanders, but the bacteria may also be inhaled via infected aerosols or dust.

Prevention: In the healthcare setting, standard contact precautions. In countries with endemic glanders in animals, prevention of disease in humans requires identification and elimination of infected animals.

Recent Washington trends: One case of melioidosis in 2007 associated with travel to Vietnam, and one case of melioidosis in 2011 associated with travel to Mexico.

2013: One case of melioidosis associated with travel to Thailand. Nearly 25 laboratory exposures were associated with the handling of the culture for this case.

Coccidioidomycosis (Valley Fever)

Cause: The soil-dwelling fungus Coccidioides immitis and C. posadasii.

Illness and treatment: If symptomatic, a pneumonia or flu-like illness with fever, cough, headache, rash, and muscle aches. Disseminated infections occur. Treatment is with antifungals.

Sources: Exposure to airborne spores. The fungi are found in soil in semi-arid climates in the southwestern United States and parts of Central and South America. New evidence (2014) documented the presence of *C. immitis* in soil in south-central Washington State.

Prevention: Avoid exposure to dusty environments in endemic regions.

Recent Washington trends: Recently there are up to six travel-associated cases each year. Three cases in 2010 -2011 were exposed in south-central Washington State.

2013: Ten cases were reported; all were travel-related.

Creutzfeldt-Jakob Disease (CJD)

Cause: Prions, or "<u>proteinaceous infectious particles</u>" in which normal cellular prion proteins in the brain fold into abnormal, pathologic forms, causing a fatal neurodegenerative disease.

Illness and treatment: About 85% of CJD cases are sporadic (sCJD) while 10–15% are inherited. Sporadic CJD is characterized by rapidly progressing dementia, poor balance, visual changes and/or muscle jerks. Treatment is supportive.

Sources: The cause of sporadic CJD is not known. In 1996, a new variant of CJD (vCJD) recognized in the United Kingdom was associated with cattle infected with a related infection ("mad cow disease"). To date, no cases of vCJD have been acquired in the United States.

Prevention: There are no specific precautions.

Recent Washington trends: During 2006 to 2012, 5 to 17 cases were reported each year (average 10 cases per year). The average yearly incidence rate of sporadic CJD over this time period was 1.4 cases per million population.

2013: 15 cases of CJD were reported.

Cryptococcosis

Cause: Fungus Cryptococcus. Notifiable condition surveillance is only for C. gattii.

Illness and treatment: Symptoms include severe cough with shortness of breath, chills, night sweats, and loss of appetite. Typical presentations are meningitis and pneumonia. Treatment is with antifungals.

Sources: *C. gattii* is an environmental fungus that has been isolated from native trees, soil, and air in the Pacific Northwest. Exposure is through inhalation of spores.

Prevention: There are no specific precautions.

Recent Washington trends: Since 2004 more than 40 animals have tested positive in the state, including porpoises, cats, dogs, a sheep, an elk, a horse, and a bird. *C. gattii* has been found in a few surface swabs, including investigators' shoes and vehicle wheel wells, a fence post and a parking lot in northwestern counties. Since 2006, 1–7 human cases are reported each year, some with presumed in-state exposure.

2013: Eight cases were reported.

Cysticercosis

Cause: Tapeworm Taenia solium

Illness and treatment: Found worldwide, most often in rural areas of developing countries. Parasitic tissue infection with larval cysts infecting brain, muscle or other tissues. Can lead to neurocysticercosis, which can cause seizures. Treatment with anti-parasitic and anti-inflammatory drugs.

Sources: Ingestion of tapeworm eggs from the stool of an infection person.

Prevention: Drink filtered water in developing countries, and practice good hand hygiene.

Recent Washington trends: Besides the 2013 case, no cases reported in the last decade.

2013: One case reported, in a recent arrival from Mexico.

Typhus

Cause: Bacterium *Rickettsia prowazekii* causes epidemic typhus, and *Rickettsia typhi* and *Rickettsia felis* cause endemic typhus

Illness and treatment: Endemic typhus symptoms include rash, fever, nausea, diarrhea and vomiting, while epidemic typhus has similar but more severe symptoms including delirium, hypotension, internal bleeding and can be fatal.

Sources: Transmitted to humans by lice (mainly epidemic typhus) and fleas (mainly endemic).

Prevention: Clean living quarters to reduce exposure to rats, mice and other animals that harbor lice and fleas.

Recent Washington trends: Besides the 2013 case, no cases reported in the last decade.

2013: One case, associated with travel to Indonesia.

Vaccinia Transmission

Cause: Vaccinia (smallpox vaccine) virus.

Illness and treatment: Symptoms are pustules where the vaccine virus was inadvertently inoculated. Treatment is supportive; special medications may be needed for severe infections.

Sources: Rare transmission from vaccinated military personnel to a secondary case through close contact (e.g., sexual partner, parent-infant, sports); tertiary cases have occurred.

Prevention: A smallpox vaccine site should be covered until fully healed, and the scab located and discarded. Unvaccinated persons should avoid contact with a fresh vaccine site or scab.

Recent Washington trends: One secondary case occurred in each of 2010 and 2012.

2013: No cases were reported.

Rare Sexually Transmitted Diseases

Cause: Bacterium Haemophilus ducreyi causes chancroid. Bacterium Calymmatobacterium

granulamatis causes granuloma inguinale. L1, L2 and L3 serovars of bacterium Chlamydia

trachomatis cause lymphogranuloma venereum.

Illness and treatment: These are three rare genital ulcer diseases. Treatment recommendations are available from CDC.

Sources: The infections are sexually transmitted.

Additional risks: These diseases are endemic in some tropical and subtropical regions.

Prevention: Use safe sexual practices to reduce transmission.

Recent Washington trends: In the past decade, there were 2 chancroid cases, no granuloma inguinale cases, and 14 lymphogranuloma venereum cases.

2013: No lymphogranuloma venereum cases, no chancroid cases, and no granuloma inguinale cases were reported.
Relapsing Fever

Cause: Spiral-shaped bacteria (spirochetes). *Borrelia hermsii* for tick-borne relapsing fever (TBRF) and *B. recurrentis* for louse-borne relapsing fever.

Illness and treatment: Symptoms include a fever lasting 2 to 7 days cycling with afebrile periods of 4 to 14 days, with 1 to 10 cycles if untreated. Along with fever there may be shaking chills, sweats, headache, muscle or joint pain, or sometimes a rash. Treatment is with antibiotics.

Sources: For <u>TBRF</u> the most common reservoirs in Washington appear to be wild rodents and *Ornithodoros hermsi*, a soft tick typically found in eastern parts of the state at higher altitudes (1500 - 8000 feet). The ticks live in rodent nests and inflict painless bites at night that are often unnoticed. <u>Louse-borne disease</u> is not endemic to the United States but may occur in travelers if an infected body louse contaminates a wound or mucous membranes.

Prevention: Avoid sleeping in rodent infested buildings. Rodent-proof structures to prevent future colonization by rodents and their soft ticks.

Recent Washington trends: Each year there are 1 to 12 reports of TBRF cases. Most are associated with overnight stays in rustic summer cabins, but some are exposed in their primary homes. Louse-borne disease is rare, even in travelers; there have been no recent reports.

2013: Four cases were reported.

Rubella

Cause: Rubella virus, family Togaviridae, genus Rubivirus.

Illness and treatment: <u>Acquired rubella</u> is a mild illness that usually includes fever and a maculopapular rash that starts on the face and spreads downward to include the entire body. The rash usually lasts 3 days and may itch. However, up to 50% of infections can be sub-clinical or inapparent. Older children and adults may have malaise, lymph node swelling, and upper respiratory symptoms before the rash. Arthritis and arthralgia frequently accompany the disease in adults, especially in women. Complications including encephalitis (1 in 6000 cases) are uncommon and occur more often in adults. <u>Congenital rubella syndrome</u> (CRS) can result if a woman acquires rubella during pregnancy, especially in the first trimester. The virus may cause a variety of congenital malformations, the most common of which is deafness. Fetal death, spontaneous abortion, or premature delivery may occur.

Sources: Humans are the reservoir. Transmission is through droplet (or less commonly airborne) spread of the respiratory secretions of infected persons, including those with asymptomatic or subclinical infections. Infants with CRS can shed virus for extended periods, but a true carrier state does not occur.

Additional risks: Since 2004, rubella is no longer considered endemic in the United States. Most reported rubella cases in the country are now among adults born in areas where rubella vaccine was not routinely used, or in unimmunized persons who travel outside the United States to areas where rubella is still endemic.

Prevention: Universal childhood immunization has been effective in preventing infection and eliminating endemic circulation of rubella in this country. Respiratory and hand hygiene can also reduce the risk of transmission. Pregnant women are routinely tested at the initial prenatal visit to verify immunity to rubella.

Recent Washington trends: Since 2000 only 0 to 2 cases of acquired rubella have been reported annually. In 2000, an infant with CRS was born in Washington to a Hispanic mother born outside the United States. This was the only CRS case reported in the state in the past 20 years.

2013: One case was reported.

Salmonellosis (Non-Typhoid)

Cause: Myriad serotypes in the bacterial genus Salmonella, excluding S. Typhi (see Typhoid).

Illness and treatment: Typical symptoms are fever, headache, diarrhea, nausea, and abdominal pain, with or without vomiting. Most persons recover without treatment. Occasionally bacteria enter the bloodstream and infect internal organs. Treatment for severe cases is with antibiotics.

Sources: Healthy animals, especially reptiles, chickens, cattle, dogs, and cats, can carry *Salmonella* without illness and be a direct source for human infection. Most human cases result from contaminated food. Common food exposures include contaminated eggs, unpasteurized milk, poultry, and produce. Person-to-person transmission can occur.

Additional risks: Illness including serious dehydration may be severe in the very young, the elderly, or those with chronic diseases. Incidence is highest in infants and young children.

Prevention: Use good food handling and personal hygiene practices, including thorough handwashing after contact with animals. Prevent contact between young children or persons with weakened immune systems and reptiles, farm animals, or birds.

Recent Washington trends: Salmonellosis is the second most common notifiable enteric infection with 589 to 850 cases reported per year. Infections occur year round with some increase during the spring and summer months. Many serotypes are reported (Table 4).

2013: 670 cases were reported (9.7 cases/100,000 population) with one death.

	• -		
Serotype (n=638)	No.	% +	
Enteritidis	148	23.2	
Typhimurium	98	15.3	
I 4,5,12:i-	38	6.0	25 Gaars Fash Densus Cathem Virsham Anstrum Darte Dublin I
Heidelberg	35	5.5	4.5 12 th - Reading Abony Bareilly Chailey Chester Daytona Derby
Saintpaul	22	3.4	Fluntern, Give, IV 50:g,z51:-, Johannesburg, Kiambu, Litchfield, Lomalin-
Newport	21	2.3	da, Ohio, Rissen.
Oranienburg	18	2.8	
Muenchen	16	2.5	One Case Each: Ago Baildon Boyismorbificans Cerro Coeln Concord
Thompson	16	2.5	Ealing, Eastbourne, Farmsen, Gaminara, Havana, I 9,12:Iz28:=, IIIa
Paratyphi B Tar + Java	14	2.2	42:g,z51, IIIb 50:k:z, IIIb 50:r:z, IIIb 61:-:-, IIIb Rough:(k):-, IV 16:z4,z32:,
Infantis	13	2.0	IV 50:z4,z23:-, Kintambo, Lawra, London, Luciana, Michigan, Monschaui, Norwich, Orientalis, Oslo, Paraturbi B, Pomona, Portland, Senftenberg
Montevideo	13	2.0	Singapore, Takoradi, Tallahassee, Tennessee, Uganda, Weltevreden.
Paratyphi A	12	1.9	
Brandenburg	11	1.7	*~
Agona	9	1.4	Serotype data are only available for confirmed (not probable) salmonello- sis cases. In 7 cases, no isolate was submitted to the Washington State Pub
Braederup	9	1.4	lic Health Laboratories for serotyping, and in one case serotyping was pend-
Stanley	9	1.4	ing at the time of this report.
Javiana	7	1.1	
Kentucky	7	1.1	Percentage based on the number of cases with serotype result.
Poona	7	1.1	
Sandiego	7	1.1	
Hadar	6	0.9	
Mbandaka	6	0.9	
Panama	5	0.8	

Table 6. Salmonella Serotypes, 2013*

Shellfish Poisoning, Paralytic, Domoic Acid or Diarrhetic

Cause: Saxitoxin from the phytoplankton *Alexandrium catenella* causes paralytic shellfish poisoning (PSP). Domoic acid from the diatom *Pseudo-nitzschia* causes domoic acid poisoning (DAP). Diarrhetic toxin from dinoflagellates *Pseudo-niszschia* causes diarrhetic shellfish poisoning (DSP).

Illness and treatment: PSP symptoms begin minutes or hours after consumption with numbness of the mouth and limbs. Severe poisoning progresses rapidly to paralysis and respiratory arrest. With DAP, gastrointestinal symptoms of vomiting, diarrhea and abdominal cramps begin within 24 hours of shellfish ingestion and there may be later confusion, seizures and permanent short-term memory loss. DSP begins in 30 minutes to 36 hours, with severe diarrhea and sometimes vomiting. There are no anti-toxins. Acute supportive care may be needed.

Sources: Bivalve mollusks such as clams, oysters, mussels, and geoduck concentrate the PSP toxin. Razor clams, Dungeness crab, other clams, mussels, and oysters concentrate the DAP toxin. There is no person-to-person spread for either.

Additional risks: PSP is only rarely associated with reddish discoloration of the water, although the term "red tide" is popularly used. PSP or DAP can be present in dangerous amounts even when the harvest site water looks clean. Cooking does not destroy either toxin.

Prevention: Before harvesting shellfish check the Marine Biotoxin Hotline (1-800-562-5632) or website for updates on affected sites and site closures, which may not always have signs posted.

Recent Washington trends: Three clusters of PSP have been reported during the past 20 years (7 reports in 2012, 7 reports in 2000, and 5 reports in 1998). There are no recent DAP cases reported. A DSP cluster in 2011 was from mussels gathered in Puget Sound.

2013: No cases reported.

Shiga Toxin-producing Escherichia coli (STEC)

Cause: Shiga toxin-producing E. coli strains (STEC) including E. coli O157:H7.

Illness and treatment: Symptoms include abdominal cramping and severe or bloody diarrhea, usually without fever. Serious complications include hemolytic uremic syndrome (HUS) or thrombotic thrombocytopenic purpura (TTP). Most persons will recover without treatment. Treating STEC diarrhea with antibiotics may increase the risk of developing HUS.

Sources: Cattle are the most important source, although other herbivores also may carry STEC. Other known sources are unpasteurized milk, undercooked ground beef and contaminated raw produce. There can be person-to-person and animal-to-person transmission, but most cases are due to ingesting contaminated food or water.

Additional risks: Children under 5 years of age are diagnosed most frequently and are at the greatest risk of developing HUS.

Prevention: Wash hands thoroughly after contact with farm animals, visiting farm environments, and handling raw meat. Thoroughly cook ground beef and venison and wash preparation areas to avoid contaminating other foods. Wash produce thoroughly before eating.

Recent Washington trends: For the past several years there have been 150–250 reports each year. STEC has a seasonal pattern. Most cases occur during summer and fall months.

Serotype (n=298)		%
O157:H7	156	54.6
O26	56	15.7
O103	25	8.8
0121	13	5.1
0111	7	5.1
O125ac	7	3.7
O157:NM	6	0.9
O186:H2	3	0.9
O118:H16	2	0.9
O157:H undetermined	2	0.5
O80:H2	2	0.5

Table 7. Shiga Toxin-producing Escherichia coli (STEC) Serotypes, 2013

One Case Each: O undetermined:H11, O undetermined:H19, O undetermined:H7, O1:H20, O101:NM, O103:H11, O103:H2, O142, O153:H25, O156:H25**, O165:H undetermined, O17:NM, O183:H18, O26:H11, O69:NM, O76:H19, O77:H18, Orough:H31, O71:H undetermined

* Serotype data are only available for confirmed cases.

⁺Percentage based on the number of cases with serotype result.

^{**}Note that one case was co-infected with O156:H25 and O157:H undetermined (not reflected in the O157:H undetermined total above).

Shigellosis

Cause: Bacteria in the genus *Shigella*, typically *S. sonnei* or S. *flexneri*. Other species including *S. boydii and S. dysenteriae* are more common in developing countries.

Illness and treatment: Symptoms include fever, watery or bloody diarrhea, abdominal pain, fatigue and headache. Most persons will recover without treatment. Antibiotics may be used to shorten the duration of intestinal excretion of the organism.

Sources: Humans are the only reservoir, transmitting through feces-contaminated food or water or through person-to-person transmission, including oral-anal sex. Outbreaks are occasionally associated with child care or food service facilities, and very rarely with swimming.

Additional risks: Ingesting very few organisms can cause infection. Outbreaks occur under conditions of crowding and poor hygiene, putting institutions for children, mental hospitals, and prisons at additional risk for outbreaks.

Prevention: Wash hands carefully including cleaning under the nails with soap and water after defecation or changing diapers and before food handling.

Recent Washington trends: Each year there are 100 to 185 reports.

2013: 122 cases were reported (1.8 cases/100,000 population).

Syphilis

Cause: Spirochete bacterium Treponema pallidum.

Illness and treatment: The disease has four stages. Primary syphilis involves a painless ulcer at the site of infection. Secondary syphilis involves fever, diffuse rash, headache, hair loss, and muscle aches. Latent syphilis is asymptomatic and not transmitted sexually. Late syphilis can result in damage to the brain, heart, or other organs. Congenital syphilis may result in organ damage and bone deformities. Antibiotics treat a syphilis infection but any damage to organs is permanent.

Sources: Syphilis is sexually transmitted or acquired before birth.

Additional risks: Disease rates are highest among men, with a higher incidence among men who have sex with men.

Prevention: Use safe sexual practices to reduce transmission. If syphilis is found, also test for other sexually transmitted infections including HIV. Test and treat all recent sexual partners of a person diagnosed with the early stages of syphilis to stop ongoing transmission.

Recent Washington trends: Rates have increased since 1996, when 9 cases were reported.

Recently over 250 primary and secondary cases have been reported annually.

2013: 285 cases of primary and secondary syphilis were reported (4.1 cases/100,000 population).

Tetanus

Cause: Neruotoxin produced by the bacterium Clostridium tetani.

Illness and treatment: Of the four types of known tetanus presentation, by far the majority of cases present as generalized tetanus which is characterized by descending rigidity and painful spasms of the skeletal muscles beginning with jaw and neck spasms commonly referred to as "lockjaw." Spasms can continue for 3-4 weeks and progress to total body spasms known as "opisthotonos." Complications include bone fractures and abnormal heart rhythms Complete recovery can take months. Case fatality rate for generalized tetanus is 10% or higher, depending on available care, with more deaths occurring in infants and elderly persons.

Neonatal tetanus is a form of generalized tetanus that occurs in newborn infants born without protective passive immunity, because the mother was not immune.

Local tetanus and cephalic tetanus are less common presentations which often progress to generalized tetanus. Treatment includes tetanus immune globulin (TIG), wound care, and supportive care including pharmacotherapy to control spasms. Antibiotics may theoretically reduce bacterial multiplication in the wound and therefore prevent further toxin production. Aactive immunization should be undertaken soon as the person is medically stable.

Sources: Spores are widely distributed in soil and in the intestinal tracts (and feces) of animals and humans. The spores can also be found on skin and in contaminated heroin. *C. tetani* usually enters the body through a wound (which may or may not be apparent) and grows best deep within damaged tissue in an anaerobic environment. Tetanus is not transmitted person to person.

Additional risks: Almost all reported cases of tetanus are in persons with either no history of vaccination with tetanus toxoid, or without a vaccine booster in the preceding decade. Any person that presents with a wound and has fewer than 3 documented doses of tetanus toxoid should be considered at risk for tetanus. Injection-drug by addicts, especially intramuscular and subcutaneous use, can lead to individual cases and occasional outbreaks.

Prevention: Universal childhood immunization with regular booster doses for adolescents and adults is effective in preventing of tetanus.

Recent Washington trends: The most recent case was reported in 2012 in a person not up-to-date for vaccine with an outdoor injury. Before that, one case was reported in each 2006 and 2000.

2013: No cases were reported.

Trichinosis (Trichinellosis)

Cause: Intestinal roundworm Trichinella spiralis.

Illness and treatment: Ingested larvae migrate and become encapsulated in muscle. Infection ranges from asymptomatic to severe, depending on the dose. Diarrhea may occur first. There is usually sudden onset of muscle pain, swelling of the upper eyelids, and recurring fever. Death can result from damage to heart muscle. Treatment depends on the stage of illness at diagnosis.

Sources: The infection is caused by ingesting raw or insufficiently cooked meat from infected animals. Historically, undercooked pork was a risk. Wild game is now the most likely exposure in North America. There is no person-to-person spread.

Additional risks: Freezing meat will not necessarily inactivate larvae of arctic strains.

Prevention: Cook or irradiate all wild game to reliably kill larvae. Regulations to prevent trichinosis require the cooking of garbage and offal fed to swine.

Washington trends: In the past decade only 2 cases have been reported. Exposures were bear and cougar meat eaten raw or undercooked.

2013: No cases were reported.

Tuberculosis

Cause: Bacterium Mycobacterium tuberculosis.

Illness and treatment: Tuberculosis (TB) usually affects the lungs, but can affect lymph nodes, bones, joints, and other parts of the body. Infection with TB may remain latent, and not communicable, or develop into active TB disease that can be infectious. Typical symptoms of TB disease may include persistent cough, bloody sputum, fever, unexplained weight loss, night sweats, and chest pain. Persons experiencing these symptoms should consult a medical provider or local health department immediately.

Patients with latent TB (LTBI) but not TB disease may need to take medication to prevent development of TB disease. Patients with active TB must complete a course of therapy.

Sources and spread: TB is spread person-to-person through the air. When a person with active TB disease of the lungs or throat coughs or sneezes the bacteria may be breathed in by others.

Additional risks: About 75% of cases in Washington are among foreign-born persons, typically from countries with higher rates of TB, where the risk of becoming infected is greater. Young children, people infected with the HIV, diabetics, persons with a weakened immune system, and the elderly are among those at increased risk of developing active TB disease if infected.

Prevention: For patients diagnosed with TB disease the most effective ways to decrease the spread of TB are keeping away from others until non-infectious and taking all TB medications exactly as prescribed. Persons at risk for infection or the development of TB disease if infected can be screened for LTBI. Completing treatment for LTBI further prevents TB disease and its spread.

Washington trends: Each year there are approximately 200 to 250 cases of TB diagnosed in Washington. From a ten year period low of 2.7 in 2012, the state rate rose slightly to equal the national rate of 3.0 in 2013.

2013: Washington State reported 209 cases of TB for a crude case rate of 3.0 per 100,000 persons. Only 6 of the 39 counties had 5 or more cases of TB, together accounting for 85.6% of the cases in Washington. King County reported 114 cases, resulting in a county rate of 5.8 cases per 100,000, while representing 58% of all Washington cases.

Tularemia

Cause: Bacterium Francisella tularensis.

Illness and treatment: Symptoms reflect the route of transmission and can include fever, malaise, swollen lymph nodes, skin ulcers, eye infection, sore throat, abdominal pain, diarrhea, and pneumonia; any infection can cause sepsis. Treatment is with antibiotics.

Sources: The reservoir is wild mammals (especially rabbits, hares, voles, squirrels, muskrats, beavers). Infection can occur through direct contact with an infected animal, bite from an arthropod (e.g., tick, deerfly), ingestion of contaminated raw meat or water, or inhalation, including during outdoor work or with improper handling of cultures in laboratories.

Prevention: Wear gloves if skinning wild game and keep hands or gloves away from the eyes. Drink only treated water when in wilderness areas. Avoid tick and insect bites.

Recent Washington trends: There are generally 1 to 10 reports annually. Exposures include insect and animal bites, contaminated water, exposure to wild rabbits or rodents, and inhalation while farming or landscaping with power tools. In 2004–2005 a statewide serosurvey of 370 outdoor pet cats and dogs found 0.6% positive overall but 4.5% positive in southwest counties.

2013: Five cases were reported, all exposed in Washington state.

Typhoid Fever

Cause: Bacterium Salmonella Typhi.

Illness and treatment: Symptoms include fever, headache, rash, constipation or diarrhea, and lymph node swelling. Severity ranges from mild febrile illness to severe disease with multiple complications. Treatment is with antibiotics.

Sources: Humans are the reservoir and transmit through fecal contamination of food, water or milk, or directly person-to-person.

Additional risks: There can be a prolonged intestinal carrier state, sometimes due to gallbladder infection; reculture patients after antibiotic treatment to confirm clearance of the infection.

Prevention: If traveling to risk areas, consult with a travel clinic or the CDC Travelers' Health website for recommendations about vaccination and other measures.

Recent Washington trends: Cases occur mainly after international travel, most commonly to Asia. Case counts are variable, ranging from 5 to 22 reports each year.

2013: 11 cases were reported.

Vibriosis (Non-Cholera)

Cause: Bacteria in the family *Vibrionaceae*, including *Vibrio parahaemolyticus*, *V. vulnificus*, non-toxinproducing *V. cholera*, other less common *Vibrio* species, and *Grimontia hollisae*. Infections caused by toxinproducing *V. cholerae* (serotypes O1 or O139) are notifiable as Cholera.

Illness and treatment: Symptoms include abdominal pain, watery diarrhea, vomiting, headache, and fever. Skin infections can occur. *V. vulnificus*, a species occurring mainly in the Gulf of Mexico, but recently found in Washington water, can cause life-threatening septicemia in persons with weakened immune systems. Most persons recover without treatment but antibiotics may be needed for severe cases.

Sources: *V. parahaemolyticus* occur naturally in Pacific coastal waters, especially during warmer months. Transmission of vibriosis usually occurs through ingesting raw or undercooked oysters or through skin injuries exposed to seawater.

Additional risks: Persons with liver disease, alcoholics, and others with weakened immune systems should be warned not to eat raw or undercooked seafood.

Prevention: Keep shellfish cold throughout the transport from harvest to preparation. To lessen risk of illness, consume raw or undercooked shellfish only from approved harvest areas and only during cooler months of the year.

Recent Washington trends: Two large outbreaks occurred in years when environmental conditions favored growth of *Vibrio* (1997 and 2006). Annual case counts are variable, ranging from 9 to 80 cases reported, with a mixture of locally acquired and travel associated exposures. Cases from out of state associated with consumption of Washington shellfish are not included in these counts.

2013: 90 cases (1.3 cases/100,000 population) were reported.

Waterborne Outbreaks

Cause: Many infectious agents including viruses, bacteria, and parasites. Common agents are norovirus, *Giardia*, and *Cryptosporidium*. Bacterial agents are less commonly implicated.

Illness and treatment: Symptoms and treatment vary with the agent.

Sources: Sources vary with the agent. Waterborne outbreaks can occur from exposure to natural or recreational water, including pools and interactive fountains, and untreated drinking water.

Additional risks: Risks vary with the agent.

Prevention: Test private wells at least every 3 years and after potential contamination such as after floods. If ill with diarrhea, do not enter recreational water, pools, or interactive fountains.

Recent Washington trends: Waterborne outbreaks are often difficult to detect. There are 0 to 3 outbreaks reported each year, each with 2 to dozens or even hundreds of cases (Table 6).

2013: No waterborne outbreaks were reported in 2013.

Year	Agent	Site Type (County)	Cases
1991	Giardia	Lake (Clark)	4
	Unknown	Lake (Thurston)	4
1992	Hepatitis A	Home well (Klickitat)	10
1993	Norovirus	Lake (Thurston)	604
	Cryptosporidium	River (Yakima)	7
	Giardia	River (Clark)	6
1994	Cryptosporidium	River (Yakima)	4
	Cryptosporidium/Giardia	Well (Walla Walla)	86
1996	Cryptosporidium	Well (Yakima)	18
1997	STEC	Well (Yakima)	2
1998	Suspect viral	Lake (Kitsap)	248
	Suspect viral	Lake (Snohomish)	58
	Unknown	Creek (Lincoln)	46
1999	<i>E. coli</i> O157:H7	Lake (Clark)	36
	Suspect viral	Well (Spokane)	68
2003	Campylobacter	Well (Walla Walla)	12
2007	Suspect viral	Well (Okanogan)	58
	Cryptosporidium	Lake (Clark)	18
	Cryptosporidium	Pool (Whatcom)	14
2011	Legionella	City water (Spokane)	3
2012	Shigella sonnei	Lake (Chelan)	3

Table 8. Waterborne Outbreaks, 1991-2013

Yersiniosis

Cause: Bacteria in the genus Yersinia, usually Y. enterocolitica or Y. pseudotuberculosis.

Illness and treatment: Symptoms are acute fever, diarrhea and abdominal pain that may mimic appendicitis. Complications are uncommon. Antibiotics may be used for severe cases.

Sources: Wild and domestic animals, particularly pigs, are reservoirs. Transmission occurs by ingesting contaminated food or water, or by direct contact with animals. Raw or undercooked pork and pork products, such as chitterlings, have been particularly associated with the illness. Person-to-person transmission appears to be rare.

Additional risks: Illness is more severe in children. Yersinia can multiply under refrigeration.

Prevention: Do not eat undercooked or raw pork or unpasteurized milk. Wash hands thoroughly after touching animals or raw pork and before eating. Dispose of animal feces in a sanitary way.

Recent Washington trends: Rates have been stable with 15 to 30 reports each year.

2013: 34 cases were reported (0.5 cases/100,000 population).

APPENDIX I

Disease Incidence and Mortality Rates

Other/ Unknown flavivirus	0	0	0	0	0	1^{T}	0	$2 (1^{\rm T}, 1^{\rm E})$	0	0	0	0
Yellow Fever	1	0	0	0	0	0	0	0	0	0	0	0
West Nile Virus	0	8^{T}	1^{T}	3^{T}	$8(5^{T}, 3^{E})$	\mathcal{S}^{T}	$4^{\rm E}$ (3 [°] , 1 ^P)	$40 (36^{\rm E}, 2^{\rm U}, 2^{\rm P})$	$2(1^{\rm E},1^{\rm T})$	0	$4 (2^{\rm E}, 2^{\rm T})$	$2(1^{\rm P},1^{\rm T})$
St. Louis Encephalitis	0	0	0	0	0	0	0	1^{T}	0	0	0	0
Japanese Encephalitis	0	0	1^{T}	0	0	0	1^{T}	0	0	0	0	0
Dengue	0	0	1^{T}	3^{T}	4^{T}	10^{T}	14^{T}	11^{T}	19^{T}	9^{T}	16^{T}	14^{T}
Colorado Tick Fever	0	0	0	0	0	0	1^{T}	0	0	0	0	0
Chikungunya	0	0	0	0	1^{T}	0	0	0	3^{T}	0	0	0
Total Cases	1	8	3	9	13	16	20	54	24	6	20	16
Year	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013

ARBOVIRAL DISEASE TYPES

^v Vaccine-associated

^T Travel-associated

^E Endemically acquired ^C Confirmed case

^U Unknown exposure location

^P Presumptive Viremic Blood Donor

BOTULISM

BRUCELLOSIS

Year	Food	Infant	Wound	Combined	Deaths	Year	Cases	Rate*	Deaths
1985	5	Δ	0	Rate*	0	1980	1	0.0	0
1986	2		0	0.2	0	1987	1	0.0	0
1087	2	+ 1	1	0.1	0	1988	1	0.0	0
1907	1	1	1	0.1	0	1989	l	0.0	0
1900	5 10	4	0	0.2	0	1990	0	0.0	0
1989	10	0	0	0.2	0	1991	3	0.1	0
1990	1	0	0	0.0	0	1992	1	0.0	0
1991	0	3	0	0.1	0	1993	0	0.0	0
1992	0	2	0	0.0	0	1994	0	0.0	0
1993	4	5	0	0.2	0	1995	0	0.0	0
1994	3	2	0	0.1	0	1996	2	0.0	0
1995	4	2	0	0.1	0	1997	3	0.1	0
1996	2	0	2	0.1	0	1998	3	0.1	0
1997	0	1	2	0.1	0	1999	0	0.0	0
1998	2	4	0	0.1	0	2000	0	0.0	0
1999	2	4	1	0.1	0	2001	0	0.0	0
2000	1	4	0	0.1	0	2002	2	0.0	0
2001	1	6	0	0.1	0	2003	1	0.0	0
2002	1	1	4	0.1	0	2004	2	0.0	0
2003	1	3	7	0.2	0	2005	0	0.0	0
2004	1	3	5	0.1	0	2006	0	0.0	0
2005	0	2	4	0.1	0	2007	1	0.0	0
2006	0	9	1	0.2	0	2008	1	0.0	0
2007	1	1	2	0.1	1	2009	1	0.0	0
2008	0	1	2	0.0	0	2010	0	0.0	0
2009	4	2	4	0.1	1	2011	1	0.0	0
2010	0	3	1	0.1	0	2012	0	0.0	0
2011	0	3	4	0.1	0	2013	1	0.0	0
2012	1	4	2	0.1	1	*All rates a	are cases pe	r 100,000 p	opulation.
2013	2	4	4	0.1	0				
*All rates a	are cases pe	er 100,000 p	opulation.			_			

	CAMPYLOBACTER								CAMPYLOBACTERIOSIS					
	20	09	20	10	20	11	20	12	20	13	STA	ΓEWID	E BY Y	YEAR
County	Cases	Rate	Cases	Rate	Cases	Rate	Cases	Rate	Cases	Rate	Year	Cases	Rate*	Deaths
Adams	6	32.6	4	*	9	47.5	4	*	3	*	1980	8	0.2	0
Asotin	1	*	1	*	1	*	3	*	2	*	1981	106	2.5	0
Benton	33	19.3	41	23.4	29	16.3	31	17.2	41	22.4	1982	299	7.0	0
Chelan	4	*	15	20.7	9	12.4	5	6.8	10	13.6	1983	149	3.5	0
Clallam	14	19.7	13	18.2	5	7.0	4	*	3	*	1984	146	3.4	1
Clark	74	17.5	110	25.9	118	27.6	83	19.2	97	22.3	1985	250	5.7	0
Columbia	0	0.0	2	*	0	0.0	0	0.0	2	*	1986	347	7.8	0
Cowlitz	18	17.6	23	22.5	38	37.0	24	23.3	22	21.3	1987	420	9.3	1
Douglas	2	*	6	15.6	3	*	6	15.4	4	*	1988	709	15.4	1
Ferry	2	*	2	*	1	*	2	*	2	*	1989	899	19.0	0
Franklin	21	28.0	19	24.3	23	28.6	11	13.3	21	24.8	1990	899	18.5	0
Garfield	0	0.0	0	0.0	1	*	0	0.0	0	0.0	1991	930	18.5	4
Grant	17	19.4	17	19.1	30	33.3	25	27.5	15	16.3	1992	1,060	20.6	1
Grays Harbor	15	20.7	12	16.5	11	15.1	13	17.8	14	19.1	1993	1,051	20.0	0
Island	14	17.8	11	14.0	10	12.7	18	22.7	8	10.0	1994	1,050	19.6	0
Jefferson	7	23.5	6	20.1	7	23.3	5	16.6	21	69.4	1995	1,050	19.2	4
King	261	13.7	304	15.7	403	20.7	447	22.8	455	23.0	1996	1,139	20.5	1
Kitsap	34	13.5	33	13.1	45	17.7	34	13.4	41	16.1	1997	1,150	20.3	0
Kittitas	2	*	6	14.7	8	19.4	14	33.7	7	16.7	1998	901	15.7	1
Klickitat	3	*	2	*	7	34.1	2	*	9	43.5	1999	950	16.3	2
Lewis	24	31.9	25	33.1	27	35.5	26	34.1	27	35.4	2000	1,006	17.1	2
Lincoln	1	*	0	0.0	0	0.0	0	0.0	1	*	2001	991	16.6	0
Mason	10	16.6	7	11.5	13	21.3	19	30.9	14	22.7	2002	1,032	17.0	1
Okanogan	2	*	6	14.6	5	12.1	7	16.9	5	12.0	2003	943	15.4	0
Pacific	1	*	5	23.9	13	62.2	4	*	5	23.8	2004	861	13.9	0
Pend Oreille	2	*	1	*	2	*	4	*	0	0.0	2005	1,045	16.6	0
Pierce	79	9.9	103	13.0	132	16.5	221	27.3	253	31.1	2006	993	15.5	0
San Juan	4	*	2	*	5	31.4	3	*	4	25.0	2007	1,020	15.6	0
Skagit	24	20.6	24	20.5	21	17.9	27	22.9	34	28.7	2008	1,069	16.2	0
Skamania	2	*	0	0.0	2	*	2	*	0	0.0	2009	1,030	15.4	1
Snohomish	92	13.0	172	24.1	219	30.5	159	22.0	180	24.6	2010	1,315	19.6	2
Spokane	62	13.3	73	15.5	54	11.4	70	14.7	42	8.8	2011	1,538	22.7	0
Stevens	1	*	2	*	7	16.1	4	*	8	18.3	2012	1,551	22.7	3
Thurston	31	12.4	57	22.6	60	23.6	68	26.5	49	18.8	2013	1,631	23.7	4
Wahkiakum	1	*	0	0.0	1	*	0	0.0	0	0.0	*All rat	tes are c	ases per	ſ
Walla Walla	5	8.5	8	13.6	11	18.7	11	18.6	20	33.6	100,000) popula	tion.	
Whatcom	59	29.5	74	36.8	86	42.6	77	37.8	56	27.2				
Whitman	1	*	8	17.9	1	*	9	19.6	3	*				
Yakima	101	41.8	121	49.7	121	49.4	109	44.3	153	61.9				
STATEWIDE TOTAL	1,030	15.4	1,315	19.6	1,538	22.7	1,551	22.7	1,631	23.7				

*All rates are cases per 100,000 population. Incidence rates not calculated for <5 cases.

CHLAMYDIA TRACHOMATIS

CHLAMYDIA TRACHOMATIS

	20	09	20	10	20	11	20	12	20	13	STA	STATEWIDE BY YE.		
County	Cases	Rate	Cases	Rate	Cases	Rate	Cases	Rates	Cases	Rates	Year	Cases	Rate*	Deaths
Adams	77	418.0	64	341.7	56	295.5	64	336.0	78	406.3	1987**	5,071	112.0	0
Asotin	41	189.9	76	351.5	59	272.5	80	368.7	80	367.0	1988	12,534	271.5	0
Benton	570	332.6	585	333.9	596	335.0	597	331.7	672	366.4	1989	10,865	229.8	0
Chelan	161	223.0	170	234.6	170	233.8	247	337.4	256	347.8	1990	12,709	261.1	0
Clallam	164	230.9	164	229.7	165	230.4	172	238.9	188	259.9	1991	12,917	257.2	0
Clark	1,312	309.6	1,347	316.7	1,490	348.1	1,382	320.5	1,419	325.8	1992	11,762	228.8	0
Columbia	4	*	7	171.7	2	*	7	170.7	6	+	1993	10,331	196.2	0
Cowlitz	340	332.8	327	319.3	380	370.0	439	426.0	292	282.7	1994	10,575	197.1	0
Douglas	77	202.4	83	216.0	114	295.0	128	329.0	135	343.7	1995	9,463	173.0	0
Ferry	16	211.6	15	198.6	29	381.6	32	418.3	26	339.9	1996	9,237	165.9	0
Franklin	310	412.7	268	342.9	298	370.2	319	386.7	413	487.0	1997	9,523	168.1	0
Garfield	1	*	4	*	1	*	1	*	0	+	1998	10,998	191.3	0
Grant	262	298.7	288	323.2	286	317.4	329	361.5	383	417.2	1999	11,964	205.2	0
Grays Harbor	140	192.9	155	212.9	137	187.9	176	240.6	171	233.6	2000	13,066	221.7	0
Island	171	217.2	200	254.8	216	274.1	206	259.6	205	257.2	2001	13,631	228.3	0
Jefferson	47	157.9	58	194.2	40	133.1	50	165.7	78	257.6	2002	14,936	246.5	0
King	5,805	304.1	5,945	307.8	6,406	329.8	6,763	345.6	6,828	344.5	2003	16,796	274.1	0
Kitsap	725	288.6	780	310.6	824	324.5	1,075	422.4	895	352.4	2004	17,635	284.0	0
Kittitas	110	270.2	130	317.7	142	343.8	189	455.4	163	389.0	2005	18,617	295.6	0
Klickitat	32	158.0	36	177.2	45	219.5	29	140.8	33	159.4	2006	17,819	277.5	0
Lewis	160	212.5	157	208.1	226	297.4	233	305.4	261	342.5	2007	19,123	293.1	0
Lincoln	9	84.7	15	141.9	10	94.3	13	121.8	6	+	2008	21,327	322.7	0
Mason	130	215.8	137	225.7	161	263.5	153	249.0	177	286.4	2009	21,178	317.4	0
Okanogan	105	256.3	117	284.5	115	279.1	136	328.3	130	313.3	2010	21,401	318.3	0
Pacific	37	177.1	30	143.4	17	81.3	30	143.1	28	133.3	2011	23,237	343.3	0
Pend Oreille	16	124.6	21	161.5	16	123.1	22	167.9	20	152.1	2012	24,600	360.8	0
Pierce	3,861	484.5	3,815	479.7	4,159	518.5	4,293	531.2	4,298	527.7	2013	25,013	363.4	0
San Juan	6	38.1	8	50.7	20	125.8	15	94.2	11	+	*All rates	are case	s per 10	0.000
Skagit	331	283.8	324	277.2	320	272.6	342	290.0	409	344.9	populatio	n.	1	,
Skamania	22	200.1	25	225.9	25	224.2	30	266.1	29	256.6	**First ve	ar reported	l. Julv - I	December
Snohomish	1,701	241.0	1,729	242.4	1,760	245.5	1,871	258.8	1,880	257.4	Note: Da	ta prior to	, 2009 a	re based
Spokane	1,637	351.0	1,617	343.2	1,780	376.6	1,923	404.3	2,037	424.4	on year re	enorted ra	ther that	n vear
Stevens	74	170.1	56	128.6	73	167.4	85	194.5	129	294.5	diagnosed	1.		, y e ui
Thurston	716	287.2	663	262.8	958	377.0	906	352.8	919	353.3				
Wahkiakum	1	*	9	226.2	5	125.0	4	*	1	+				
Walla Walla	152	259.6	164	279.0	201	341.8	191	323.2	209	351.3				
Whatcom	544	272.4	571	283.9	555	274.6	593	291.4	580	281.8				
Whitman	131	297.7	131	292.6	156	348.2	173	376.5	189	410.9				
Yakima	1,180	488.2	1,110	456.4	1,224	500.2	1,302	529.3	1,379	557.7				
STATEWIDE TOTAL	21,178	317.4	21,401	318.3	23,237	343.3	24,600	360.8	25,013	363.4				

All incidence rates are cases per 100,000 population.

*For 2009-2012, incidence rates not calculated for <5 cases.

+For 2013, incidence rates suppressed for counts <20 and rates with residual standard error (RSE) >30% due to statistical instability.

Year	Cases	Rate*	Deaths
1985	0	0.0	0
1986	0	0.0	0
1987	0	0.0	0
1988	0	0.0	0
1989	0	0.0	0
1990	0	0.0	0
1991	0	0.0	0
1992	2	0.0	0
1993	0	0.0	0
1994	0	0.0	0
1995	0	0.0	0
1996	0	0.0	0
1997	0	0.0	0
1998	0	0.0	0
1999	0	0.0	0
2000	0	0.0	0
2001	0	0.0	0
2002	1	0.0	0
2003	0	0.0	0
2004	0	0.0	0
2005	0	0.0	0
2006	0	0.0	0
2007	0	0.0	0
2008	0	0.0	0
2009	0	0.0	0
2010	0	0.0	0
2011	0	0.0	0
2012	0	0.0	0
2013	1	0.0	0

CHOLERA

201310.00*All rates are cases per 100,000 population.

CRYPTOSPORIDIOSIS⁺

	20	09	20	10	20	11	20	12	20	13
County	Cases	Rate								
Adams	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
Asotin	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
Benton	2	*	1	*	0	0.0	1	*	2	*
Chelan	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
Clallam	4	*	4	*	8	11.2	4	*	1	*
Clark	18	4.2	13	3.1	9	2.1	14	3.2	8	1.8
Columbia	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
Cowlitz	4	*	7	6.8	3	*	2	*	4	*
Douglas	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
Ferry	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
Franklin	1	*	1	*	1	*	0	0.0	0	0.0
Garfield	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
Grant	0	0.0	0	0.0	0	0.0	0	0.0	1	*
Grays Harbor	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
Island	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
Jefferson	5	16.8	8	26.8	7	23.3	7	23.2	3	*
King	32	1.7	17	0.9	13	0.7	23	1.2	18	0.9
Kitsap	0	0.0	0	0.0	0	0.0	2	*	0	0.0
Kittitas	1	*	0	0.0	0	0.0	0	0.0	1	*
Klickitat	0	0.0	0	0.0	0	0.0	1	*	0	0.0
Lewis	2	*	0	0.0	0	0.0	0	0.0	1	*
Lincoln	0	0.0	0	0.0	1	*	0	0.0	1	*
Mason	0	0.0	0	0.0	1	*	1	*	0	0.0
Okanogan	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
Pacific	0	0.0	0	0.0	0	0.0	1	*	0	0.0
Pend Oreille	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
Pierce	17	2.1	32	4.0	39	4.9	22	2.7	24	2.9
San Juan	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
Skagit	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
Skamania	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
Snohomish	6	0.8	8	1.1	1	*	10	1.4	7	1.0
Spokane	4	*	4	*	1	*	3	*	4	*
Stevens	1	*	1	*	0	0.0	0	0.0	0	0.0
Thurston	0	0.0	1	*	2	*	3	*	2	*
Wahkiakum	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
Walla Walla	0	0.0	0	0.0	1	*	1	*	2	*
Whatcom	2	*	0	0.0	0	0.0	0	0.0	0	0.0
Whitman	0	0.0	1	*	0	0.0	1	*	1	*
Yakima	3	*	4	*	1	*	5	2.0	3	*
STATEWIDE TOTAL	102	1.5	102	1.5	88	1.3	101	1.5	84	1.2

CRYPTOSPORIDIOSIS

STATEWIDE BY YEAR

Year Cases Rate* Death

*All rates are cases per

1.2

100,000 population.

*All rates are cases per 100,000 population. Incidence rates not calculated for <5 cases.

CYCLOSPORIASIS[‡]

Year	Cases	Rate*	Deaths
2002	5	0.1	0
2003	0	0.0	0
2004	11	0.2	0
2005	5	0.1	0
2006	1	0.0	0
2007	1	0.0	0
2008	1	0.0	0
2009	0	0.0	0
2010	2	0.0	0
2011	4	0.1	0
2012	0	0.0	0
2013	0	0.0	0

Cyclosporiasis first became a notifiable condition in Washington in 12/2000.

*All rates are cases per 100,000 population.

Year	Cases	Rate*	Deaths
1985	0	0.0	0
1986	0	0.0	0
1987	0	0.0	0
1988	0	0.0	0
1989	0	0.0	0
1990	0	0.0	0
1991	0	0.0	0
1992	0	0.0	0
1993	0	0.0	0
1994	0	0.0	0
1995	0	0.0	0
1996	0	0.0	0
1997	0	0.0	0
1998	0	0.0	0
1999	0	0.0	0
2000	0	0.0	0
2001	0	0.0	0
2002	0	0.0	0
2003	0	0.0	0
2004	0	0.0	0
2005	0	0.0	0
2006	0	0.0	0
2007	0	0.0	0
2008	0	0.0	0
2009	0	0.0	0
2010	0	0.0	0
2011	0	0.0	0
2012	0	0.0	0
2013	0	0.0	0

*All rates are cases per 100,000 population.

GIARDIASIS											GIARDIASIS			
	20	09	20	10	20	11	20	12	20	13	STA	TEWID	E BY Y	YEAR
County	Cases	Rate	Year	Cases	Rate*	Deaths								
Adams	0	0.0	1	*	1	*	1	*	0	0.0	1980	840	20.3	0
Asotin	2	*	1	*	0	0.0	1	*	3	*	1981	547	12.9	0
Benton	8	4.7	5	2.9	3	*	3	*	8	4.4	1982	956	22.4	0
Chelan	3	*	8	11.0	7	9.6	1	*	7	9.5	1983	706	16.4	0
Clallam	8	11.3	7	9.8	4	*	7	9.7	6	8.3	1984	710	16.3	0
Clark	38	9.0	56	13.2	47	11.0	30	7.0	25	5.7	1985	779	17.6	0
Columbia	0	0.0	0	0.0	1	*	0	0.0	1	*	1986	811	18.2	0
Cowlitz	1	*	2	*	2	*	5	4.9	6	5.8	1987	827	18.3	0
Douglas	0	0.0	1	*	0	0.0	1	*	3	*	1988	851	18.4	0
Ferry	0	0.0	1	*	0	0.0	0	0.0	1	*	1989	980	20.7	0
Franklin	2	*	1	*	0	0.0	4	*	3	*	1990	792	16.3	0
Garfield	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1991	876	17.4	1
Grant	5	5.7	5	5.6	1	*	3	*	3	*	1992	860	16.7	1
Grays Harbor	4	*	6	8.2	9	12.3	4	*	1	*	1993	747	14.2	0
Island	7	8.9	10	12.7	7	8.9	6	7.6	13	16.3	1994	722	13.5	0
Jefferson	6	20.2	9	30.1	6	20.0	9	29.8	6	19.8	1995	855	15.6	0
King	105	5.5	110	5.7	156	8.0	170	8.7	195	9.8	1996	668	12.0	0
Kitsap	8	3.2	16	6.4	18	7.1	23	9.0	23	9.0	1997	738	13.0	0
Kittitas	4	*	4	*	4	*	4	*	1	*	1998	740	12.9	1
Klickitat	1	*	1	*	0	0.0	1	*	2	*	1999	560	9.6	1
Lewis	8	10.6	8	10.6	6	7.9	7	9.2	7	9.2	2000	622	10.6	1
Lincoln	0	0.0	0	0.0	1	*	0	0.0	0	0.0	2001	512	8.6	0
Mason	2	*	7	11.5	8	13.1	7	11.4	4	*	2002	510	8.4	0
Okanogan	5	12.2	4	*	4	*	2	*	7	16.9	2003	435	7.1	0
Pacific	0	0.0	2	*	0	0.0	3	*	2	*	2004	444	7.2	0
Pend Oreille	0	0.0	3	*	0	0.0	1	*	0	0.0	2005	437	6.9	0
Pierce	31	3.9	37	4.7	42	5.2	48	5.9	46	5.6	2006	451	7.0	0
San Juan	2	*	0	0.0	1	*	2	*	1	*	2007	590	9.0	0
Skagit	10	8.6	11	9.4	9	7.7	3	*	6	5.1	2008	486	7.4	0
Skamania	1	*	0	0.0	2	*	4	*	0	0.0	2009	467	7.0	0
Snohomish	70	9.9	59	8.3	67	9.3	52	7.2	60	8.2	2010	521	7.7	0
Spokane	55	11.8	47	10.0	31	6.6	39	8.2	24	5.0	2011	529	7.8	0
Stevens	2	*	2	*	2	*	3	*	0	0.0	2012	512	7.5	0
Thurston	27	10.8	22	8.7	37	14.6	33	12.9	27	10.4	2013	548	8.0	0
Wahkiakum	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	*All rate	es are ca	ses per	100,000
Walla Walla	3	*	1	*	5	8.5	4	*	7	11.8	populati	on.		
Whatcom	23	11.5	44	21.9	29	14.3	19	9.3	35	17.0				
Whitman	0	0.0	3	*	2	*	2	*	3	*				
Yakima	26	10.8	27	11.1	17	6.9	10	4.1	12	4.9				
STATEWIDE TOTAL	467	7.0	521	7.7	529	7.8	512	7.5	548	8.0				

*All rates are cases per 100,000 population. Incidence rates not calculated for <5 cases.

GONORRHEA

GONORRHEA

	20	<u> </u>		10		1.1	20	10	201	12	STA	TEWID	E BY Y	EAR
Country	20	Dete	20	10 Data	20	Data	20	12 Data	20.	Data	Year	Cases	Rate*	Deaths
<u>A dama</u>	Cases	Kate *	Cases	Kate *		Kate *	Cases	A2 0	Cases 2	Kate	1980	14,215	344.0	0
Auallis	5	*	5	22.1	1	277	0	42.0	3	+ +	1981	13,204	312.2	0
Asotin	4 24	10.8	5 16	23.1 0.1	30	27.7 16.0	10	0.0	2 88	T 18 0	1982	11,381	266.1	0
Chalan	24 2	19.0	2	9.1 *	0 0	11.0	10	127	10	48.0	1983	9,895	229.7	0
Chellam	12	16.0	2 21	20.4	0 15	20.0	2	*	0	' +	1984	9,158	210.3	0
Clark	12	20.2	21 170	29.4 40.0	15	20.9	2 151	25.0	0	- 24.0	1985	10,073	228.1	0
Claik	124	29.5	1/0	40.0	0	57.1	2	35.0 *	140	54.0	1986	9,848	220.7	0
Cominita	0	0.0	1	24.2	10	10.0	2	25.2	21	+ 20.2	1987	8,909	196.8	0
Cowiliz	9	ð.ð *	33 2	34.2 *	19	18.5	20	23.2 *	21	20.5	1988	7,154	155.0	0
Douglas	3	~ • • •	2	*	/	18.1	3	т •	9	+	1989	6,369	134.7	0
Ferry	0	0.0	2	~ ~ ~	l	~ ·	2	•	2	+	1990	5,009	102.9	0
Franklin	10	13.3	19	24.3	18	22.4	24	29.1	73	86.1	1991	4,441	88.4	0
Garfield	0	0.0	1	*	0	0.0	1	*	0	+	1992	4,169	81.1	0
Grant	9	10.3	17	19.1	21	23.3	59	64.8	34	37.0	1993	3,740	71.0	0
Grays Harbor	12	16.5	5	6.9	12	16.5	5	6.8	12	16.4	1994	2,893	53.9	0
Island	14	17.8	13	16.6	6	7.6	19	23.9	24	30.1	1995	2,765	50.5	0
Jefferson	2	*	2	*	3	*	1	*	3	+	1996	2,020	36.3	0
King	1,083	56.7	1,568	81.2	1,376	70.8	1,527	78.0	1771	89.4	1997	1,955	34.5	0
Kitsap	44	17.5	48	19.1	54	21.3	57	22.4	109	42.9	1998	1,948	33.9	0
Kittitas	6	14.7	8	19.6	9	21.8	8	19.3	5	+	1999	2,132	36.6	0
Klickitat	2	*	1	*	1	*	3	*	1	+	2000	2,419	41.0	0
Lewis	8	10.6	10	13.3	6	7.9	12	15.7	21	27.6	2001	2,991	50.1	0
Lincoln	1	*	1	*	0	0.0	1	*	0	+	2002	2,925	48.3	0
Mason	5	8.3	7	11.5	6	9.8	15	24.4	14	22.7	2003	2,754	44.9	0
Okanogan	7	17.1	3	*	8	19.4	5	12.1	12	28.9	2004	2,810	45.3	0
Pacific	1	*	1	*	2	*	3	*	15	71.4	2005	3,738	59.3	0
Pend Oreille	0	0.0	0	0.0	0	0.0	4	*	6	+	2006	4,231	65.9	0
Pierce	457	57.3	414	52.1	424	52.9	657	81.3	966	118.6	2007	3,646	55.9	0
San Juan	2	*	4	*	1	*	4	*	1	+	2008	3,116	47.2	0
Skagit	12	10.3	17	14.5	16	13.6	22	18.7	41	34.6	2009	2,268	34.0	0
Skamania	2	*	4	*	4	*	1	*	1	+	2010	2,865	42.6	0
Snohomish	148	21.0	191	26.8	169	23.6	165	22.8	251	34.4	2011	2,730	40.3	0
Spokane	131	28.1	137	29.1	158	33.4	181	38.1	329	68.5	2012	3,282	48.1	0
Stevens	4	*	5	11.5	2	*	1	*	16	36.5	2013	4,390	63.8	0
Thurston	26	104	49	194	57	22.4	88	34 3	114	43.8	*All rat	tes are ca	ses per	100,000
Wahkiakum	0	0.0	0	0.0	0	0.0	0	0.0	0	+	populat	10n. Data prior	to 2000) or o
Walla Walla	5	8.5	9	153	3	*	9	15.2	27	45.4	hased o	n vear re	norted r	ather
Whatcom	38	19.0	30	14.9	18	89	49	24 1	 60	29.7	than year diagnosed			
Whitman	10	22.0	11	24 G	11	24 G		2- 1 .1 56.6	12	29.2	inun yo	ai aiagilo	Jua.	
Vakima	38	22.7 15 7	3/	14.0	00	27.0 40.5	20 87	32.2	180	20.5 72.8				
STATEWIDE TOTAL	2.268	34.0	2.865	42.6	2.730	40.3	3.282	48.1	4.390	63.8				

All incidence rates are cases per 100,000 population.

*For 2009-2012, incidence rates not calculated for <5 cases.

+For 2013, incidence rates suppressed for counts <20 and rates with residual standard error (RSE) >30% due to statistical instability.

Year	Cases	Rate*	Deaths
1980	126	3.0	0
1981	156	3.7	0
1982	149	3.5	6
1983	123	2.9	5
1984	110	2.5	5
1985	153	3.5	6
1986	319	7.1	11
1987	271	6.0	6
1988	200	4.3	0
1989	163	3.4	2
1990	123	2.5	6
1991	51	1.0	0
1992	22	0.4	1
1993	17	0.3	0
1994	10	0.2	0
1995	11	0.2	3
1996	10	0.2	0
1997	6	0.1	0
1998	11	0.2	1
1999	5	0.1	1
2000	8	0.1	0
2001*	7	1.8	0
2002*	5	1.2	0
2003*	13	3.2	1
2004*	4	1.0	0
2005*	5	1.2	0
2006*	5	1.2	0
2007*	6	1.4	0
2008*	2	0.5	0
2009*	9	2.1	0
2010*	10	2.3	1
2011*	8	1.8	1
2012*	4	0.9	0
2013*	11	2.4	0

HAEMOPHILUS INFLUENZAE INVASIVE DISEASE

*All rates are cases per 100,000 population. Rates for 2001-2013 are for population aged 0-4 years.

HANTAVIRUS PULMONARY

Year	Cases	Rate*	Deaths
1985**	2	0.0	1
1994	4	0.1	2
1995	4	0.1	2
1996	3	0.1	1
1997	2	0.0	0
1998	5	0.1	1
1999	1	0.0	0
2000	1	0.0	0
2001	1	0.0	0
2002	2	0.0	1
2003	2	0.0	0
2004	1	0.0	0
2005	3	0.0	2
2006	2	0.0	0
2007	2	0.0	1
2008	2	0.0	1
2009	3	0.0	1
2010	2	0.0	0
2011	2	0.0	1
2012	2	0.0	2
2013	0	0.0	0

‡ Hantavirus Pulmonary Syndrome first became a notifiable condition in Washington in 12/2000.

*All rates are cases per 100,000 population.

** One retrospective case from 1985 was reported.

	Н	EPA	TITIS	5 A	ACU	ГЕ					HEF	PATITI	S A, AC	CUTE
	20	2009 2010 2011 2012 2013						STATEWIDE BY YEAR						
County	Cases	Rate	Cases	Rate	Cases	Rate	Cases	Rate	Cases	Rate	Year	Cases	Rate*	Deaths
Adams	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1980	554	13.4	2
Asotin	0	0.0	1	*	1	*	0	0.0	1	*	1981	791	18.7	0
Benton	0	0.0	0	0.0	0	0.0	1	*	0	0.0	1982	494	11.6	1
Chelan	0	0.0	0	0.0	1	*	1	*	4	*	1983	268	6.2	1
Clallam	0	0.0	1	*	0	0.0	0	0.0	1	*	1984	373	8.6	0
Clark	1	*	1	*	0	0.0	1	*	2	*	1985	702	15.9	2
Columbia	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1986	1,385	31.0	1
Cowlitz	0	0.0	1	*	0	0.0	2	*	1	*	1987	2,589	57.2	1
Douglas	0	0.0	1	*	0	0.0	0	0.0	0	0.0	1988	2,669	57.8	/
Ferry	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1989	3,273	69.2	5
Franklin	0	0.0	1	*	0	0.0	1	*	0	0.0	1990	1,380	28.4	1
Garfield	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1991	008 865	12.1	3
Grant	1	*	1	*	1	*	1	*	2	*	1992	005 026	10.0	1
Grays Harbor	1	*	0	0.0	0	0.0	1	*	0	0.0	1995	1 1 1 9 2 0	20.9	2
Island	1	*	0	0.0	0	0.0	0	0.0	0	0.0	1995	937	17.1	9
Jefferson	0	0.0	0	0.0	0	0.0	1	*	0	0.0	1996	1 001	18.0	3
King	15	0.8	7	0.4	16	0.8	10	0.5	13	0.7	1997	1.019	18.0	1
Kitsap	2	*	2	*	2	*	0	0.0	2	*	1998	1,037	18.0	2
Kittitas	0	0.0	0	0.0	0	0.0	1	*	0	0.0	1999	505	8.7	1
Klickitat	1	*	0	0.0	0	0.0	0	0.0	0	0.0	2000	298	5.1	1
Lewis	0	0.0	0	0.0	0	0.0	1	*	1	*	2001	184	3.1	0
Lincoln	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2002	162	2.7	0
Mason	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2003	50	0.8	0
Okanogan	0	0.0	0	0.0	1	*	0	0.0	0	0.0	2004	69	1.1	0
Pacific	1	*	0	0.0	0	0.0	0	0.0	1	*	2005	63	1.0	1
Pend Oreille	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2006	52	0.8	2
Pierce	5	0.6	2	*	2	*	1	*	1	*	2007	60	0.9	0
San Juan	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2008	51	0.8	0
Skagit	0	0.0	0	0.0	2	*	1	*	0	0.0	2009	42	0.6	1
Skamania	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2010	21	0.3	0
Snohomish	7	1.0	2	*	2	*	1	*	9	12	2011	31	0.5	1
Spokane	1	*	0	0.0	0	0.0	0	0.0	1	*	2012	29	0.4	1
Stevens	0	0.0	0	0.0	0	0.0	0 0	0.0	0	0.0	2013	45	0.7	1
Thurston	2	*	0	0.0	0	0.0	2	*	1	*	*All rate	s are cas	ses per 1	00,000
Wahkiakum	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	populatio	on.		
Walla Walla	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0				

*All rates are cases per 100,000 population. Incidence rates not calculated for <5 cases.

*

0.0

0.0

0.3

*

0.0

0.0

0.5

*

0.0

*

0.4

*

0.0

*

0.7

Whatcom

Whitman

Yakima

STATEWIDE TOTAL

*

0.0

*

0.6

	H	EPA	TITI	SB.	ACUT	ГЕ					HEI	PATITIS	B, AC	UTE
	20	09	20	10	20	11	20	12	20	13	STA	TEWID	E BY Y	EAR
County	Cases	Rate	Year	Cases	Rate*	Deaths								
Adams	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1980	257	6.2	6
Asotin	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1981	345	8.2	11
Benton	1	*	0	0.0	0	0.0	1	*	1	*	1982	358	8.4	2
Chelan	1	*	0	0.0	0	0.0	0	0.0	0	0.0	1983	307	7.1	3
Clallam	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1984	317	7.3	2
Clark	1	*	3	*	3	*	0	0.0	0	0.0	1985	484	11.0	6
Columbia	0	0.0	1	*	0	0.0	0	0.0	0	0.0	1986	989	22.2	8
Cowlitz	4	*	2	*	4	*	1	*	2	*	1987	1,126	24.9	4
Douglas	0	0.0	0	0.0	0	0.0	1	*	1	*	1988	979	21.2	6
Ferry	1	*	0	0.0	0	0.0	0	0.0	0	0.0	1989	1,055	22.3	9
Franklin	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1990	616	12.7	7
Garfield	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1991	470	9.4	5
Grant	0	0.0	0	0.0	1	*	1	*	0	0.0	1992	399	7.8	1
Grays Harbor	0	0.0	0	0.0	1	*	1	*	1	*	1993	247	4.7	0
Island	0	0.0	1	*	0	0.0	0	0.0	0	0.0	1994	255	4.8	2
Jefferson	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1995	226	4.1	2
King	11	0.6	13	0.7	15	0.8	11	0.6	10	0.5	1996	158	2.8	1
Kitsap	0	0.0	0	0.0	2	*	1	*	0	0.0	1997	114	2.0	2
Kittitas	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1998	136	2.4	0
Klickitat	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1999	111	1.9	1
Lewis	0	0.0	0	0.0	0	0.0	1	*	0	0.0	2000	132	2.2	5
Lincoln	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2001	171	2.9	0
Mason	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2002	83	1.4	0
Okanogan	0	0.0	0	0.0	1	*	0	0.0	0	0.0	2003	90	1.5	1
Pacific	2	*	0	0.0	1	*	0	0.0	0	0.0	2004	64	1.0	1
Pend Oreille	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2005	80	1.3	0
Pierce	9	1.1	2	*	1	*	1	*	3	*	2006	80	1.2	2
San Juan	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2007	71	1.1	1
Skagit	1	*	1	*	0	0.0	0	0.0	1	*	2008	56	0.8	0
Skamania	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2009	48	0.7	0
Snohomish	2	*	8	1.1	3	*	5	0.7	0	0.0	2010	50	0.7	1
Spokane	10	2.1	12	2.5	1	*	4	*	13	2.7	2011	35	0.5	0
Stevens	3	*	1	*	0	0.0	1	*	0	0.0	2012	34	0.5	1
Thurston	0	0.0	3	*	2	*	1	*	1	*	2013	34	0.5	1
Wahkiakum	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	*All rate	s are case	es per 10	00,000
Walla Walla	1	*	0	0.0	0	0.0	1	*	0	0.0	populatio	on.		
Whatcom	0	0.0	3	*	0	0.0	3	*	1	*				
Whitman	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0				
Yakima	1	*	0	0.0	0	0.0	0	0.0	0	0.0				
STATEWIDE TOTAL	48	0.7	50	0.7	35	0.5	34	0.5	34	0.5				

STATEWIDE TOTAL480.7500.7350.5340.534*All rates are cases per 100,000 population. Incidence rates not calculated for <5 cases.</td>

HEPATITIS C. ACUTE

HEPATITIS C, ACUTE

Deaths

		00	20	10	20	11	20	10	20	12	STA	TEWID	E BY Y	EAR
	20	<u>09</u>	20	10 D (20		20	12 D	20	<u>D13</u>	Year	Cases	Rate*	Death
Adams	Cases	Rate	Cases	Rate	Cases	Rate	Cases	Rate	Cases	Rate	1981	54	1.3	8
Austin	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1982	94	2.2	0
Asoun	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1983	151	3.5	1
Benton	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1984	131	3.0	2
Chelan	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1985	145	3.3	1
Clallam	1	~ 	0	0.0	3	*	2	*	2	*	1986	167	3.7	7
	0	0.0	3	т О О	l	т О О	2	т 0.0	2	*	1987	207	4.6	1
Columbia	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1988	232	5.0	2
Cowlitz	0	0.0	0	0.0	0	0.0	l	*	0	0.0	1989	208	4.4	4
Douglas	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1990	141	2.9	6
Ferry	0	0.0	0	0.0	l	*	0	0.0	0	0.0	1991	164	3.3	4
Franklin	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1992	186	3.6	1
Garfield	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1993	219	4.2	1
Grant	0	0.0	0	0.0	1	*	0	0.0	0	0.0	1994	294	5.5	0
Grays Harbor	1	*	0	0.0	0	0.0	0	0.0	1	*	1995	234	4.3	1
Island	1	*	0	0.0	0	0.0	0	0.0	0	0.0	1996	66	1.2	1
Jefferson	0	0.0	0	0.0	0	0.0	0	0.0	3	*	1997	42	0.7	0
King	5	0.3	8	0.4	7	0.4	5	0.3	18	0.9	1998	29	0.5	0
Kitsap	0	0.0	0	0.0	0	0.0	0	0.0	1	*	2000	24 44	0.4	0
Kittitas	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2000	44 21	0.7	0
Klickitat	1	*	0	0.0	1	*	0	0.0	0	0.0	2001	27	0.5	0
Lewis	0	0.0	0	0.0	0	0.0	0	0.0	1	*	2002	27	0.4	0
Lincoln	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2003	21	0.3	1
Mason	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2004	23	0.4	0
Okanogan	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2005	21	0.5	0
Pacific	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2000	18	0.1	0
Pend Oreille	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2007	25	0.5	0
Pierce	1	*	2	*	1	*	3	*	7	0.9	2009	22	0.3	0
San Juan	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2010	25	0.4	0
Skagit	1	*	1	*	4	*	4	*	1	*	2011	41	0.6	0
Skamania	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2012	54	0.8	0
Snohomish	1	*	1	*	3	*	1	*	3	*	2013	63	0.9	0
Spokane	7	1.5	4	*	10	2.1	13	2.7	14	2.9	*All rate	s are cas	es per 1	00,000
Stevens	0	0.0	0	0.0	1	*	2	*	1	*	populatio	on.	1	,
Thurston	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0				
Wahkiakum	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0				
Walla Walla	0	0.0	2	*	0	0.0	0	0.0	0	0.0				
Whatcom	2	*	4	*	8	4.0	19	9.3	9	4.4				
Whitman	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0				
Yakima	1	*	0	0.0	0	0.0	2	*	0	0.0				
STATEWIDE TOTAL	22	03	25	0.4	41	0.6	54	0.8	63	0.9				

*All rates are cases per 100,000 population. Incidence rates not calculated for <5 cases.

HERPES SIMPLEX										
	200	09	20	10	20	11	20	12	20	13
County	Cases	Rate								
Adams	2	*	3	*	3	*	3	*	3	+
Asotin	3	*	4	*	7	32.3	4	*	6	+
Benton	60	35.0	33	18.8	50	28.1	44	24.4	50	27.3
Chelan	14	19.4	13	17.9	20	27.5	21	28.7	9	+
Clallam	21	29.6	16	22.4	10	14.0	12	16.7	20	27.6
Clark	87	20.5	82	19.3	67	15.7	90	20.9	153	35.1
Columbia	3	*	0	0.0	0	0.0	1	*	2	+
Cowlitz	38	37.2	41	40.0	32	31.2	53	51.4	31	30.0
Douglas	5	13.1	7	18.2	11	28.5	6	15.4	7	+
Ferry	2	*	0	0.0	1	*	0	0.0	4	+
Franklin	15	20.0	10	12.8	14	17.4	13	15.8	18	21.2
Garfield	0	0.0	0	0.0	0	0.0	0	0.0	1	+
Grant	14	16.0	16	18.0	12	13.3	16	17.6	9	+
Grays Harbor	13	17.9	18	24.7	19	26.1	11	15.0	23	31.4
Island	29	36.8	38	48.4	35	44.4	31	39.1	34	42.7
Jefferson	4	*	10	33.5	9	30.0	5	16.6	2	+
King	542	28.4	601	31.1	632	32.5	742	37.9	633	31.9
Kitsap	82	32.6	74	29.5	71	28.0	67	26.3	71	28.0
Kittitas	10	24.6	12	29.3	14	33.9	17	41.0	8	+
Klickitat	0	0.0	2	*	1	*	3	*	2	+
Lewis	16	21.2	19	25.2	22	28.9	31	40.6	27	35.4
Lincoln	0	0.0	0	0.0	0	0.0	0	0.0	1	+
Mason	13	21.6	15	24.7	16	26.2	19	30.9	6	+
Okanogan	7	17.1	10	24.3	15	36.4	9	21.7	20	48.2
Pacific	2	*	2	*	1	*	1	*	5	+
Pend Oreille	4	*	1	*	6	46.2	1	*	2	+
Pierce	261	32.8	248	31.2	327	40.8	346	42.8	364	44.7
San Juan	1	*	4	*	2	*	3	*	0	*
Skagit	31	26.6	40	34.2	34	29.0	21	17.8	26	21.9
Skamania	3	*	3	*	0	0.0	1	*	1	+
Snohomish	221	31.3	280	39.3	297	41.4	228	31.5	282	38.6
Spokane	158	33.9	174	36.9	185	39.1	134	28.2	132	27.5
Stevens	5	11.5	4	*	3	*	8	18.3	11	+
Thurston	85	34.1	93	36.9	77	30.3	103	40.1	91	35.0
Wahkiakum	0	0.0	2	*	1	*	0	0.0	3	+
Walla Walla	20	34.2	23	39.1	17	28.9	17	28.8	14	23.5
Whatcom	41	20.5	75	37.3	62	30.7	66	32.4	71	34.5
Whitman	6	13.6	5	11.2	2	*	10	21.8	9	+
Yakima	57	23.6	50	20.6	74	30.2	60	24.4	56	22.7
STATEWIDE TOTAL	1,875	28.1	2,028	30.2	2,149	31.8	2,197	32.2	2,207	32.1

HERPES SIMPLEX								
STA	TEWI	DE BY	YEAR					
Year	Cases	Rate*	Deaths					
2001	1,836	30.8	0					
2002	1,914	31.6	0					
2003	2,073	33.8	0					
2004	2,153	34.7	0					
2005	2,331	37.0	0					
2006	2,446	38.1	0					
2007	1,952	29.9	0					
2008	2,009	30.4	0					
2009	1,875	28.1	0					
2010	2,028	30.2	0					
2011	2,149	31.8	0					
2012	2,197	32.2	0					
2013	2,207	32.1	0					
*All rates are cases per 100,000								

population.

Note: Data prior to 2009 are based on year reported rather than year diagnosed.

All incidence rates are cases per 100,000 population.

*For 2009-2012, incidence rates not calculated for <5 cases.

+For 2013, incidence rates suppressed for counts <20 and rates with residual standard error (RSE) >30% due to statistical instability.

HUMAN	N IMI	MUN	ODE	FICI	ENC	Y VI	RUS (HIV) [§]		People Living with HIV Disease					
	20	09	20	10	20	11	20	12	20	13	a	and Related Deaths [‡]				
County	Cases	Rate	Cases	Rate	Cases	Rate	Cases	Rate	Cases	Rate	STA	ATEWID	E BY Y	YEAR		
Adams	1	*	0	*	1	*	0	*	0	*	Year	Cases ^α	Rate*	Deaths**		
Asotin	2	*	2	*	1	*	0	*	1	*	2000	7.576	128.5	154		
Benton	6	*	7	*	12	6.7	6	*	7	*	2001	8.058	135.0	144		
Chelan	3	*	5	*	4	*	3	*	3	*	2002	8 545	141.0	143		
Clallam	3	*	1	*	3	*	4	*	3	*	2003	8 958	146.2	180		
Clark	22	5.2	29	6.8	28	6.5	27	6.3	26	6.0	2003	9.415	1517	142		
Columbia	0	*	0	*	0	*	0	*	0	*	2004	9.874	156.0	163		
Cowlitz	4	*	5	*	4	*	4	*	2	*	2005	10 276	160.1	103		
Douglas	1	*	2	*	1	*	0	*	1	*	2000	10,270	164.1	122		
Ferry	0	*	0	*	0	*	0	*	0	*	2007	10,710	104.1	114		
Franklin	6	*	4	*	1	*	2	*	0	*	2008	11,001	10/.4	109		
Garfield	0	*	0	*	0	*	0	*	0	*	2009	11,398	170.8	134		
Grant	1	*	3	*	3	*	3	*	0	*	2010	11,761	174.9	107		
Grays Harbor	0	*	5	*	4	*	6	*	1	*	2011	11,762	173.8	118		
Island	8	*	3	*	1	*	3	*	1	*	2012	11,930	175.0	79		
Jefferson	0	*	0	*	0	*	1	*	0	*	2013	12,273	178.3			
King	302	15.8	323	16.7	271	14.0	289	14.8	261	13.2	‡Note t	hat this ta	ble has	been		
Kitsap	10	*	2	*	7	*	12	4.7	7	*	changed	since the	last ed	ition of		
Kittitas	0	*	0	*	0	*	0	*	2	*	this report. The new table lists people living with HIV disease rather than newly diagnosed cases.					
Klickitat	0	*	0	*	0	*	1	*	0	*						
Lewis	4	*	0	*	5	*	1	*	1	*						
Lincoln	0	*	0	*	0	*	0	*	0	*	^α Numbe	ers are bas	ed on a	new		
Mason	3	*	11	*	7	*	9	*	3	*	methodo	ology whi	ch cour	its cases		
Okanogan	4	*	0	*	1	*	3	*	0	*	of HIV o	disease the	at have	been		
Pacific	1	*	0	*	0	*	2	*	0	*	reported	to the he	alth dep	artment		
Pend Oreille	0	*	0	*	0	*	0	*	0	*	and are	presumed	living	in		
Pierce	62	7.8	61	*	56	7.0	53	6.6	59	7.3	Washing	gton at a s	pecific	point in		
San Juan	2	*	2	*	0	*	0	*	1	*	time, reg	gardless o	f where	each case		
Skagit	1	*	4	*	5	*	4	*	9	*	was diag	gnosed. T	his met	hodology		
Skamania	1	*	0	*	0	*	0	*	0	*	accounts	s for in-m	igration	as well		
Snohomish	42	5.9	33	4.6	32	4.5	41	5.7	31	4.2	as out-m	iigration,	which i	esults in a		
Spokane	18	3.9	24	5.1	25	5.3	25	5.3	21	4.4	slower II	increase of Wool	ipeople	e living		
Stevens	1	*	0	*	1	*	0	*	2	*	with HI	v III wasi	ington	over time.		
Thurston	12	4.8	12	4.8	7	*	4	*	10	*						
Wahkiakum	0	*	0	*	0	*	0	*	1	*	*All rate	es are case	es per 1	00,000		
Walla Walla	0	*	0	*	0	*	3	*	0	*	populati	on.				
Whatcom	8	*	1	*	7	*	4	*	9	*	de de T					
Whitman	1	*	1	*	1	*	0	*	0	*	**Inclue	tes only d	eaths at	ttributed		
Yakima	17	7.0	16	6.6	8	*	7	*	8	*	to HIV (or AIDS.	I he nu	mber of		
STATEWIDE TOTAL	546	8.2	556	8.3	496	7.3	517	7.6	470	6.8	unavaila	ble at the	time of	fthis		

§ Cases are presented by year of initial HIV diagnosis, regardless of diagnostic status (HIV or AIDS), and report. by county of residence at time of diagnosis. Data from years 2009-2012 have been adjusted since previous editions of this report. Data reflects cases reported through 5/31/14.

*All rates are cases per 100,000 population. New HIV case rates not calculated for 11 or fewer cases.

LEGIONELLOSIS

Yea	r Cases	Rate*	Deaths		Year	Cases	Rate*	Deaths
198:	5 7	0.2	2		1986	0	0.0	0
1980	6 15	0.3	8		1987	0	0.0	0
198′	7 24	0.5	3		1988	0	0.0	0
1988	8 29	0.6	4		1989	0	0.0	0
1989	9 30	0.6	5		1990	0	0.0	0
1990	0 18	0.4	4		1991	0	0.0	0
199	1 15	0.3	5		1992	0	0.0	0
1992	2 15	0.3	5		1993	0	0.0	0
1993	3 12	0.2	2		1994	0	0.0	0
1994	4 13	0.2	2		1995	0	0.0	0
199:	5 22	0.4	6		1996	2	0.0	0
1990	6 7	0.1	2		1997	2	0.0	0
199′	7 11	0.2	0		1998	0	0.0	0
1998	8 15	0.3	2		1999	0	0.0	0
1999	9 21	0.4	4		2000	0	0.0	0
2000	0 19	0.3	1		2001	4	0.1	0
200	1 10	0.2	1		2002	0	0.0	0
2002	2 8	0.1	3		2003	1	0.0	0
2003	3 14	0.2	1		2004	0	0.0	0
2004	4 15	0.2	4		2005	4	0.1	0
2003	5 18	0.3	1		2006	1	0.0	0
2006	6 20	03	1		2007	5	0.1	0
200	o 20 7 24	0.5	2		2008	1	0.0	0
200	, <u>2</u> 1 8 19	0.1	1		2009	0	0.0	0
2009	9 29	0.4	2		2010	1	0.0	0
200) 35	0.1			2011	0	0.0	0
2010	1 42	0.5	т 1		2012	2	0.0	0
201	$1 \qquad 43$	0.0	4	*	2013 All rates	U are cases pe	0.0 r 100 000 r	onulation
2012	$2 \qquad 50 \qquad 52 \qquad 52 \qquad 52 \qquad 53 \qquad 53 \qquad 53 \qquad 53 \qquad 53$	0.4	5 5		111 14(05)	ure euses pe	1 100,000 F	
/	1 1/		1					

 $\frac{2013}{* \text{All rates are cases per 100,000 population.}} 5$

LISTERIOSIS

LYME DISEASE

Year	Cases	Rate*	Deaths	-	Year	Cases	Rate*	Deaths
1985	21	0.5	1	-	1986	1	0.0	0
1986	37	0.8	5		1987	10	0.2	0
1987	36	0.8	6		1988	12	0.3	0
1988	38	0.8	4		1989	37	0.8	0
1989	21	0.4	2		1990	33	0.7	0
1990	22	0.5	3		1991	7	0.1	0
1991	18	0.4	6		1992	14	0.3	0
1992	13	0.3	0		1993	9	0.2	0
1993	21	0.4	2		1994	4	0.1	0
1994	13	02	3		1995	10	0.2	0
1995	24	0.4	1		1996	18	0.3	0
1996	11	0.1	3		1997	10	0.2	0
1007	17	0.2	1		1998	7	0.1	0
1009	17	0.3	1		1999	14	0.2	0
1998	12	0.2	5		2000	9	0.2	0
2000	12	0.3	2		2001	9	0.2	0
2001	15	0.3	- 1		2002	12	0.2	0
2002	11	0.2	0		2003	7	0.1	0
2003	13	0.2	3		2004	14	0.2	0
2004	13	0.2	3		2005	13	0.2	0
2005	14	0.2	3		2006	8	0.1	0
2006	18	0.3	3		2007	12	0.2	0
2007	25	0.4	2		2008	23	0.3	0
2008	29	0.4	3		2009	16	0.2	0
2009	24	0.4	4		2010	16	0.2	0
2010	24	0.4	1		2011	19	0.3	0
2011	19	0.3	2		2012	15	0.2	0
2012	26	0.4	5		2013	19	0.3	0
2013	21	0.3	1		*All rates a	are cases pe	r 100,000 p	opulation.

*All rates are cases per 100,000 population.

	MAL	ARIA	
Year	Cases	Rate*	Deaths
1981	30	0.7	0
1982	24	0.6	0
1983	15	0.3	0
1984	20	0.5	0
1985	34	0.8	0
1986	35	0.8	0
1987	28	0.6	0
1988	24	0.5	0
1989	44	0.9	0
1990	33	0.7	0
1991	29	0.6	0
1992	21	0.4	0
1993	41	0.8	0
1994	45	0.8	0
1995	23	0.4	0
1996	41	0.7	0
1997	49	0.9	0
1998	30	0.5	0
1999	43	0.7	0
2000	43	0.7	0
2001	19	0.3	0
2002	26	0.4	0
2003	34	0.6	0
2004	24	0.4	0
2005	24	0.4	0
2006	43	0.7	1
2007	30	0.5	0
2008	32	0.5	0
2009	26	0.4	1
2010	39	0.6	0
2011	24	0.4	0
2012	26	0.4	0
2013	30	04	0

MALARIA

 $\frac{2013 \quad 30 \quad 0.4 \quad 0}{* \text{All rates are cases per 100,000 population.}}$

			ME	ASL	ES							MEA	SLES	
	20	09	20	10	20	11	20	12	20	13	STA	TEWI	DE BY	YEAR
County	Cases	Rate	Year	Cases	Rate*	Deaths								
Adams	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1980	178	4.3	0
Asotin	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1981	3	0.1	0
Benton	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1982	42	1.0	0
Chelan	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1983	43	1.0	0
Clallam	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1984	178	4.1	0
Clark	0	0.0	0	0.0	3	*	0	0.0	0	0.0	1985	176	3.0	0
Columbia	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1987	47	1.0	0
Cowlitz	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1988	7	0.2	0
Douglas	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1989	56	1.2	0
Ferry	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1990	357	7.3	2
Franklin	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1991	67	1.3	0
Garfield	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1992	11	0.2	0
Grant	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1993	0	0.0	0
Grays Harbor	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1994	5	0.1	0
Island	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1995	17	0.3	0
Jefferson	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1996	38	0.7	0
King	1	*	1	*	0	0.0	0	0.0	4	*	1997	2	0.0	0
Kitsap	0	0.0	0	0.0	1	*	0	0.0	0	0.0	1998	l c	0.0	0
Kittitas	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1999	2 2	0.1	0
Klickitat	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2000	5 15	0.1	0
Lewis	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2001	15	0.5	0
Lincoln	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2002	0	0.0	0
Mason	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2004	7	0.1	0
Okanogan	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2005	1	0.0	0
Pacific	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2006	1	0.0	0
Pend Oreille	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2007	3	0.0	0
Pierce	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2008	19	0.3	0
San Juan	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2009	1	0.0	0
Skagit	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2010	1	0.0	0
Skamania	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2011	4	0.1	0
Snohomish	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2012	0	0.0	0
Spokane	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2013	4	0.1	0
Stevens	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	"All fal	ies are c	ases per	100,000
Thurston	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	popula	.1011.		
Wahkiakum	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0				
Walla Walla	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0				
Whatcom	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0				
Whitman	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0				
Yakima	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0				
STATEWIDE TOTAL	1	0.0	1	0.0	4	0.1	0	0.0	4	0.1				

All rates are cases per 100,000 population.

2009 2010 2011 2012 2013 STATEWIDE BY YEAR County Cases Rate Deaths Adams 0 0.0 0 0.0 0 0.0 </th
County Cases Rate Deaths Adams 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 <t< th=""></t<>
Adams 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
Asotin 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 1981 78 1.8 3 Benton 0 0.0 0 0.0 2 * 0 0.0 1 * 1982 56 1.3 2 Chelan 0 0.0 0 0.0 0 0.0 1 * 1983 48 1.1 3 Clallam 0 0.0 0 0.0 0 0.0 1 * 1984 56 1.3 3 Clark 3 * 4 * 1 * 0 0.0 2 * 1985 67 1.5 6
Benton 0 0.0 0 0.0 2 * 0 0.0 1 * 1982 56 1.3 2 Chelan 0 0.0 0 0.0 0 0.0 1 * 1983 48 1.1 3 Clallam 0 0.0 0 0.0 0 0.0 1 * 1984 56 1.3 3 Clark 3 * 4 * 1 * 0 0.0 2 * 1985 67 1.5 6
Chelan 0 0.0 0 0.0 0 0.0 0 0.0 1 * 1983 48 1.1 3 Clallam 0 0.0 0 0.0 0 0.0 0 0.0 1 * 1983 48 1.1 3 Clark 3 * 4 * 1 * 0 0.0 2 * 1983 48 1.1 3
Clallam 0 0.0 0 0.0 0 0.0 0 0.0 1 * 1984 56 1.3 3 Clark 3 * 4 * 1 * 0 0.0 2 * 1985 67 1.5 6
Clark 3 * 4 * 1 * 0 0.0 2 * 1985 67 1.5 6
Columbia 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 1986 62 1.4 5
Cowlitz 0 0.0 0 0.0 0 0.0 1 * 1 * 1 * 198/ 8/ 1.9 4
Douglas 0 0.0 0 0.0 0 0.0 0 0.0 1 * 1988 /6 1.6 3
Ferry 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 1000 00 1000 00 1000 00 1000 00 00 00
Franklin 0 0.0 0 0.0 2 * 0 0.0 0 0.0 1001 72 1.5 0
Garfield 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 1002 02 1.8 5
Grant 1 * 0 0.0 0 0.0 0 0.0 0 0.0 1002 07 1.8 5
Gravs Harbor 0 0.0 1 $*$ 0 0.0 2 $*$ 0 0.0 1004 111 2.1 7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Jefferson 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 1996 116 2.1 10
King 5 0.3 8 0.4 8 0.4 4 * 3 * 1997 115 2.0 11
S $2 * 0 0.0 1 * 0 0.0 2 * 1998 77 1.3 7$
Kittitas 0 0.0 0 0.0 2 * 1 * 1999 93 1.6 4
Klickitat 0 0.0 0 0.0 0 0.0 1 * 0 0.0 2000 71 1.2 6
Lewis 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 2001 71 1.2 6
Lincoln 0 0.0 0 0.0 0 0.0 0 0.0 1 * 2002 76 1.3 8
Mason 1 * 0 0.0 0 0.0 0 0.0 0 0.0 2003 61 1.0 7
Okanogan 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 2004 42 0.7 4
Pacific 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 2005 53 0.8 4
Pend Oreille 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 2006 45 0.7 1
Pierce 3 * 3 * 1 * 3 * 1 * 2007 32 0.5 8
San Juan 1 * 0 0.0 0 0.0 0 0.0 0 0.0 2008 40 0.6 4
Skagit 0 0.0 1 * 0 0.0 0 0.0 0 0.0 2009 26 0.4 3
Skamania 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 <th< td=""></th<>
Snohomish $2 \times 5 0.7 5 0.7 2 \times 2 \times 12^{-10}$ $2011 22 0.3 0$
Spokane $4 * 2 * 0 00 2 * 2 * 2 * 2012 24 0.4 1$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Thurston $1 \times 2 \times 0 \times 0 \times 1 \times 0 \times 0 \times 1 \times 0 \times 0 \times 1 \times 0 \times 0$
Wabkiakum $0 00 0 00 0 00 0 00 0 00 0 000$
Walla 0 0.0 1 $*$ 0 0.0 1 $*$ 0 0.0 1 $*$ 0 0.0 1 $*$ 0 0.0 1 $*$ 0 0.0 1 $*$ 0 0.0 1 $*$ 0 0.0 1 $*$ 0 0.0 1 $*$ 0 0.0 1 $*$ 0 0.0 1 $*$ 0 0.0 1 $*$ 0 0.0 1 $*$ 0 0.0 1 $*$ 0 0.0 1 $*$ 0 0.0 1 $*$ 0 0.0 1 $*$ 0 0.0 1 $*$ 0 0.0 1 $*$ 0 0.0 0.0 1 $*$ 0 0.0 0.0 1 $*$ 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Whatcom $1 * 0 00 2 * 1 * 0 00$
Whitman $0 0.0 3 * 0 0.0 2 * 0 0.0$
Yakima $2 * 2 * 0 00 2 * 0 00$
STATEWIDE TOTAL 26 0.4 33 0.5 22 0.3 24 0.4 20 0.3

*All rates are cases per 100,000 population. Incidence rates not calculated for <5 cases.

Year	Cases	Rate*	Deaths
1980	166	4.0	0
1981	165	3.9	0
1982	102	2.4	0
1983	55	1.3	0
1984	56	1.3	0
1985	42	1.0	0
1986	30	0.7	0
1987	70	1.5	0
1988	44	1.0	0
1989	59	1.2	0
1990	66	1.4	0
1991	178	3.5	0
1992	18	0.4	0
1993	14	0.3	0
1994	23	0.4	0
1995	16	0.3	0
1996	26	0.5	0
1997	21	0.4	0
1998	11	0.2	0
1999	2	0.0	0
2000	10	0.2	0
2001	2	0.0	0
2002	0	0.0	0
2003	11	0.2	0
2004	2	0.0	0
2005	3	0.0	0
2006	42	0.7	0
2007	53	0.8	0
2008	14	0.2	0
2009	6	0.1	0
2010	7	0.1	0
2011	2	0.0	0
2012	2	0.0	0
2013	2	0.0	0

MUMPS

*All rates are cases per 100,000 population.

PERTUSSIS									PERTUSSIS					
	20	09	20	10	20	11	20	12	20	13	STA	TEWII	DE BY Y	YEAR
County	Cases	Rate	Cases	Rate	Cases	Rate	Cases	Rate	Cases	Rate	Year	Cases	Rate*	Deaths
Adams	0	0.0	3	*	2	*	15	78.7	2	*	1980	77	1.9	0
Asotin	0	0.0	3	*	0	0.0	4	*	1	*	1981	58	1.4	1
Benton	6	3.5	9	5.1	4	*	85	47.2	8	4.4	1982	36	0.8	1
Chelan	0	0.0	1	*	2	*	46	62.8	7	9.5	1983	20	0.5	0
Clallam	0	0.0	2	*	4	*	25	34.7	13	18.0	1984	326	7.5	1
Clark	18	4.2	92	21.6	94	22.0	326	75.6	59	13.5	1985	92	2.1	0
Columbia	0	0.0	2	*	0	0.0	1	*	1	*	1986	163	3.7	2
Cowlitz	6	5.9	26	25.4	71	69.1	72	69.9	5	4.8	1987	110	2.4	0
Douglas	0	0.0	0	0.0	0	0.0	10	25.7	3	*	1988	130	2.8	1
Ferry	0	0.0	1	*	0	0.0	7	91.5	0	0.0	1989	201	4.3	0
Franklin	0	0.0	0	0.0	5	6.2	45	54.5	5	5.9	1990	227	4.7	0
Garfield	0	0.0	0	0.0	0	0.0	0	0.0	1	*	1991	149	3.0	0
Grant	1	*	25	28.1	30	33.3	53	58.2	58	63.2	1992	241	4./	0
Grays Harbor	7	9.6	2	*	3	*	24	32.8	1	*	1993	90 140	1.8	0
Island	1	*	13	16.6	30	38.1	46	58.0	0	0.0	1994	140	2.0	0
Jefferson	0	0.0	2	*	2	*	25	82.9	0	0.0	1995	491 830	9.0 14.0	0
King	38	2.0	69	3.6	124	6.4	785	40.1	113	5.7	1990	481	85	0
Kitsap	5	2.0	31	12.3	16	6.3	92	36.1	7	2.8	1998	406	0. <i>5</i> 7 1	1
Kittitas	26	63.9	19	46.4	9	21.8	34	81.9	8	19.1	1999	739	12.7	0
Klickitat	3	*	3	*	2	*	6	29.1	2	*	2000	458	7.8	1
Lewis	6	8.0	41	54.3	6	7.9	71	93.1	6	7.9	2001	184	3.1	0
Lincoln	0	0.0	0	0.0	1	*	2	*	1	*	2002	575	9.5	0
Mason	0	0.0	2	*	0	0.0	14	22.8	7	11.3	2003	844	13.8	0
Okanogan	7	17.1	6	14.6	2	*	22	53.1	15	36.1	2004	842	13.6	0
Pacific	3	*	0	0.0	1	*	7	33.4	0	0.0	2005	1,026	16.3	0
Pend Oreille	0	0.0	10	76.9	0	0.0	4	*	0	0.0	2006	377	5.9	1
Pierce	29	3.6	84	10.6	129	16.1	783	96.9	116	14.2	2007	482	7.4	0
San Juan	2	*	17	107.8	38	239.0	14	87.9	0	0.0	2008	460	7.0	1
Skagit	9	7.7	4	*	5	4.3	559	473.9	18	15.2	2009	291	4.4	0
Skamania	0	0.0	0	0.0	2	*	3	*	0	0.0	2010	607	9.0	2
Snohomish	35	5.0	46	6.4	268	37.4	549	75.9	52	7.1	2011	962	14.2	2
Spokane	4	*	7	1.5	18	3.8	198	41.6	48	10.0	2012	4,916	72.1	0
Stevens	0	0.0	13	29.9	1	*	42	96.1	3	*	2013	748	10.9	0
Thurston	11	4.4	36	14.3	10	3.9	63	24.5	43	16.5	*All rat	es are ca	ises per	100,000
Wahkiakum	6	149.9	0	0.0	0	0.0	1	*	0	0.0	populat	10n.		
Walla Walla	0	0.0	1	*	2	*	55	93.1	1	*				
Whatcom	34	17.0	25	12.4	68	33.6	333	163.6	35	17.0				
Whitman	0	0.0	1	*	2	*	2	*	8	17.4				
Yakima	34	14.1	11	4.5	11	4.5	493	200.4	101	40.8				
STATEWIDE TOTAL	291	44	607	9.0	962	14.2	4 916	72.1	748	10.9				

*All rates are cases per 100,000 population. Incidence rates not calculated for <5 cases.

PLAGUE										
Year	Cases	Rate*	Deaths							
1986	0	0.0	0							
1987	0	0.0	0							
1988	0	0.0	0							
1989	0	0.0	0							
1990	0	0.0	0							
1991	0	0.0	0							
1992	0	0.0	0							
1993	0	0.0	0							
1994	0	0.0	0							
1995	0	0.0	0							
1996	0	0.0	0							
1997	0	0.0	0							
1998	0	0.0	0							
1999	0	0.0	0							
2000	0	0.0	0							
2001	0	0.0	0							
2002	0	0.0	0							
2003	0	0.0	0							
2004	0	0.0	0							
2005	0	0.0	0							
2006	0	0.0	0							
2007	0	0.0	0							
2008	0	0.0	0							
2009	0	0.0	0							
2010	0	0.0	0							
2011	0	0.0	0							
2012	0	0.0	0							
2013	0	0.0	0							

*All rates are cases per	100,000	population.
--------------------------	---------	-------------

POLIOMYELITIS										
Year	Cases	Rate*	Deaths							
1985	0	0.0	0							
1986	0	0.0	0							
1987	1‡	0.0	0							
1988	1‡	0.0	0							
1989	0	0.0	0							
1990	0	0.0	0							
1991	1‡	0.0	0							
1992	1‡	0.0	0							
1993	1‡	0.0	0							
1994	0	0.0	0							
1995	0	0.0	0							
1996	0	0.0	0							
1997	0	0.0	0							
1998	0	0.0	0							
1999	0	0.0	0							
2000	0	0.0	0							
2001	0	0.0	0							
2002	0	0.0	0							
2003	0	0.0	0							
2004	0	0.0	0							
2005	0	0.0	0							
2006	0	0.0	0							
2007	0	0.0	0							
2008	0	0.0	0							
2009	0	0.0	0							
2010	0	0.0	0							
2011	0	0.0	0							
2012	0	0.0	0							
2013	0	0.0	0							

*All rates are cases per 100,000 population.

*Vaccine-associated cases.

PSITTACOSIS

Q FEVER

Year	Cases	Rate*	Deaths	Year	Cases	Rate*	Deaths
1985	3	0.1	1	1986	2	0.0	0
1986	7	0.2	0	1987	1	0.0	1
1987	12	0.3	0	1988	1	0.0	0
1988	8	0.2	0	1989	0	0.0	0
1989	4	0.1	1	1990	2	0.0	0
1990	5	0.1	0	1991	0	0.0	0
1991	6	0.1	0	1992	1	0.0	0
1992	13	0.3	0	1993	0	0.0	0
1993	4	0.1	0	1994	0	0.0	0
1994	4	0.1	0	1995	1	0.0	0
1995	7	0.1	0	1996	0	0.0	0
1996	4	0.1	0	1997	0	0.0	0
1997	0	0.0	0	1998	0	0.0	0
1998	3	0.1	0	1999	1	0.0	0
1999	0	0.0	0	2000	0	0.0	0
2000	1	0.0	0	2001	0	0.0	0
2001	0	0.0	0	2002	0	0.0	0
2002	0	0.0	0	2003	0	0.0	0
2003	0	0.0	0	2004	0	0.0	0
2004	0	0.0	0	2005	2	0.0	0
2005	1	0.0	0	2006	0	0.0	0
2006	0	0.0	0	2007	1	0.0	0
2007	0	0.0	0	2008	0	0.0	0
2008	0	0.0	0	2009	1	0.0	0
2009	0	0.0	0	2010	3	0.0	1
2010	0	0.0	0	2011	8	0.1	0
2011	0	0.0	0	2012	3	0.0	2
2012	0	0.0	0	2013	3	0.0	0
2013	0	0.0	0	*All rates a	are cases pe	r 100,000 p	opulation.

*All rates are cases per 100,000 population.
RABIES (HUMAN)

RARE SEXUALLY TRANSMITTED DISEASES

Year	Cases	Rate*	Deaths	Statewide Total Cases						
1985	0	0.0	0	Year	Total	Chancroid	Granuloma inguinale	Lymphogranuloma venereum		
1986	0	0.0	0	1986	1	1	0	0		
1987	0	0.0	0	1987	7	1	1	5		
1988	0	0.0	0	1000	1	1	1	1		
1989	0	0.0	0	1988	1	0	0	1		
1990	0	0.0	0	1989	13	6	0	/		
1991	0	0.0	0	1990	3	1	I	l		
1992	0	0.0	0	1991	7	3	2	2		
1993	0	0.0	0	1992	4	2	0	2		
1994	0	0.0	0	1993	4	0	0	4		
1995	1	0.0	1	1994	4	1	0	3		
1996	0	0.0	0	1995	6	5	0	1		
1997	1	0.0	1	1996	2	1	0	1		
1998	0	0.0	0	1997	2	2	0	0		
1999	0	0.0	0	1998	1	1	0	0		
2000	0	0.0	0	1999	0	0	0	0		
2001	0	0.0	0	2000	1	0	0	1		
2002	0	0.0	0	2001	0	0	0	0		
2003	0	0.0	0	2002	1	1	0	0		
2004	0	0.0	0	2003	1	0	0	1		
2004	0	0.0	0	2004	0	0	0	0		
2005	0	0.0	0	2005	3	0	0	3		
2006	0	0.0	0	2006	0	0	0	0		
2007	0	0.0	0	2007		0	0	1		
2008	0	0.0	0	2008	5	1	0	4		
2009	0	0.0	0	2009	2	0	0	2		
2010	0	0.0	0	2010	3	1	0	2		
2011	0	0.0	0	2011	1	0	0	1		
2012	0	0.0	0	2012	0	0	0	0		
2013	0	0.0	0	2013	0	0	0	0		

*All rates are cases per 100,000 population.

Note: Data prior to 2009 are based on year reported rather than year diagnosed

REI	LAPSI	NG	FE	VER
KEI	JAPSI	NG	FE	VER

RUBELLA

Ye	ear	Cases	Rate*	Deaths	_	Year	Cases	Rate*	Deaths
19	86	2	0.0	0	_	1981	108	2.6	0
19	87	2 7	0.0	1		1982	58	1.4	0
19	88	, 5	0.1	0		1983	10	0.2	0
19	89	5	0.1	ů 0		1984	2	0.0	0
19	90	4	0.1	ů 0		1985	16	0.4	0
19	91	6	0.1	ů 0		1986	15	0.3	0
19	97	6	0.1	0		1987	2	0.0	0
19	92	2	0.0	0		1988	0	0.0	0
10	93	9	0.0	0		1989	2	0.0	0
10	05	12	0.2	0		1990	6	0.1	0
19	95	12 Q	0.2	0		1991	8	0.2	0
19	07	0	0.1	0		1992	8	0.2	0
19	197	4	0.1	0		1993	3	0.1	0
19	90	3	0.1	0		1994	0	0.0	0
19	00	5	0.1	0		1995	2	0.0	0
20	00	3 1	0.1	1		1996	15	0.3	0
20	101	1	0.0	0		1997	5	0.1	0
20	02	1	0.1	0		1998	5	0.1	0
20	03	6	0.1	0		1000	5	0.1	0
20	04	6	0.1	0		2000	8	0.1	0
20	05	2	0.1	0		2000	0	0.1	0
20	00	2	0.0	0		2001	0	0.0	0
20	07	9	0.1	0		2003	0	0.0	0
20	800	4	0.1	0		2004	0	0.0	0
20	09	5	0.1	0		2005	1	0.0	0
20	10	7	0.1	0		2006	0	0.0	0
20	11	11	0.2	0		2007	0	0.0	0
20	12	6	0.1	0		2008	0	0.0	0
20	13	4	0.1	0		2009	0	0.0	0
*All	rates ar	e cases pe	er 100,000 p	opulation.		2010	1	0.0	0
						2011	2	0.0	0
						2012	0	0.0	0

201310.00*All rates are cases per 100,000 population.

SALMONELLOSIS										SA	ALMON	ELLO	SIS	
	20	09	20	10	201	11	20	12	20	13	STA	TEWID	E BY Y	/EAR
County	Cases	Rate	Year	Cases	Rate*	Deaths								
Adams	3	*	3	*	3	*	2	*	3	*	1980	462	11.2	0
Asotin	3	*	5	23.1	2	*	1	*	1	*	1981	574	13.6	5
Benton	21	12.3	25	14.3	12	6.7	30	16.7	27	14.7	1982	749	17.5	0
Chelan	8	11.1	9	12.4	8	11.0	6	8.2	2	*	1983	739	17.2	0
Clallam	7	9.9	2	*	0	0.0	3	*	5	6.9	1984	515	11.8	0
Clark	98	23.1	63	14.8	50	11.7	156	36.2	46	10.6	1985	565	12.8	0
Columbia	1	*	1	*	2	*	0	0.0	0	0.0	1986	783	17.5	2
Cowlitz	9	8.8	5	4.9	7	6.8	16	15.5	9	8.7	1987	660	14.6	l
Douglas	1	*	3	*	3	*	4	*	2	*	1988	612	13.3	0
Ferry	0	0.0	0	0.0	2	*	5	65.4	0	0.0	1989	630	13.3	2
Franklin	6	8.0	13	16.6	8	9.9	7	8.5	15	17.7	1990	634 701	15.0	0
Garfield	1	*	2	*	1	*	0	0.0	0	0.0	1991	/91	15.8	1
Grant	7	8.0	12	13.5	4	*	15	16.5	14	15.3	1992	820	11.0	1
Gravs Harbor	12	16.5	9	12.4	6	8.2	7	9.6	7	9.6	1995	850 863	15.0	0
Island	10	12.7	10	12.7	3	*	7	8.8	7	8.8	1994	601	12.6	0
Jefferson	4	*	3	*	1	*	4	*	5	16.5	1995	734	13.2	0
King	257	13.5	224	11.6	193	9.9	219	11.2	199	10.0	1997	675	11.2	0
Kitsan	22	8.8	27	10.8	25	98	16	63	19	7.5	1998	703	12.2	° 2
Kittitas	5	12.3	1	*	3	*	7	16.9	5	11.9	1999	792	13.6	2
Klickitat	4	*	1	*	5	24.4	0	0.0	2	*	2000	659	11.2	1
Lewis	7	9.3	11	14.6	10	13.2	6	7.9	5	6.6	2001	681	11.4	2
Lincoln	1	*	1	*	1	*	1	*	2	*	2002	655	10.8	0
Mason	3	*	7	11.5	3	*	3	*	9	146	2003	699	11.4	1
Okanogan	2	*	5	12.2	1	*	0	0.0	1	*	2004	660	10.6	2
Pacific	0	0.0	3	*	0	0.0	2	*	2	*	2005	626	9.9	0
Pend Oreille	0	0.0	1	*	0	0.0	8	61.1	-	*	2006	627	9.8	3
Pierce	78	9.8	71	89	53	6.6	75	93	74	91	2007	758	11.6	2
San Juan	1	*	1	*	0	0.0	2	*	0	0.0	2008	846	12.8	3
Skagit	10	86	17	14 5	3	*	15	12.7	15	12.6	2009	820	12.3	2
Skamania	1	*	0	0.0	0	0.0	0	0.0	1	*	2010	780	11.6	3
Snohomish	88	12.5	77	10.8	77	10.7	67	93	64	88	2011	589	8.7	2
Spokane	41	8.8	46	9.8	39	83	63	13.2	33	69	2012	842	12.4	0
Stevens	2	*	3	*	1	*	6	13.7	6	137	2013	670	9.7	1
Thurston	- 36	144	27	107	13	51	34	13.2	32	12.3	*All rate	es are cas	ses per 1	100,000
Wahkiakum	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	populati	on.		
Walla Walla	6	10.2	4	*	11	18.7	3	*	8	13.4				
Whatcom	24	12.0	24	119	19	94	14	69	16	7.8				
Whitman	1	*	11	24.6	2	*	12	26.1	2	*				
Yakima	40	16.5	53	21.8	- 18	74	26	10.6	31	12.5				
STATEWIDE TOTAL	820	12.3	780	11.6	589	8.7	842	12.4	670	9.7				

*All rates are cases per 100,000 population. Incidence rates not calculated for <5 cases.

Year	Cases	Rate*	Deaths
1985	3	0.1	0
1986	0	0.0	0
1987	0	0.0	0
1988	7	0.2	0
1989	0	0.0	0
1990	0	0.0	0
1991	0	0.0	0
1992	0	0.0	0
1993	0	0.0	0
1994	0	0.0	0
1995	0	0.0	0
1996	0	0.0	0
1997	0	0.0	0
1998	5	0.1	0
1999	0	0.0	0
2000	7	0.1	0
2001	0	0.0	0
2002	0	0.0	0
2003	0	0.0	0
2004	0	0.0	0
2005	1	0.0	0
2006	1	0.0	0
2007	0	0.0	0
2008	0	0.0	0
2009	0	0.0	0
2010	0	0.0	0
2011	0	0.0	0
2012	9	0.1	0
2013	0	0.0	0

SHELLFISH POISONING: PARALYTIC, DOMOIC ACID, DIARRHETIC

*All rates are cases per 100,000 population.

SHIGA TOXIN-PRODUCING ESCHERICHIA COLI (STEC)

SHIGA TOXIN-

	-			_	_		_	C	- /	PRODUCING ESCHERICH-				
	20)09	20	10	20	11	20	12	20	13		IA COL	I (STE	C)
County	Cases	Rate	Cases	Rate	Cases	Rate	Cases	Rate	Cases	Rate	STA	TEWII	DE BY Y	YEAR
Adams	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	Year	Cases	Rate*	Deaths
Asotin	0	0.0	0	0.0	0	0.0	2	*	2	*	1988	167	3.6	0
Benton	4	*	1	*	6	3.4	2	*	12	6.5	1989	157	3.3	1
Chelan	2	*	2	*	0	0.0	3	*	5	6.8	1990	220	4.5	0
Clallam	0	0.0	3	*	0	0.0	2	*	2	*	1991	164	3.3	0
Clark	25	5.9	34	8.0	12	2.8	27	6.3	51	11.7	1992	300	5.8	2
Columbia	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1993	741	14.1	3
Cowlitz	1	*	3	*	1	*	7	6.8	0	0.0	1994	174	3.2	2
Douglas	0	0.0	0	0.0	2	*	0	0.0	0	0.0	1995	140	2.6	1
Ferry	0	0.0	1	*	0	0.0	0	0.0	0	0.0	1996	187	3.4	1
Franklin	0	0.0	2	*	2	*	1	*	4	*	1997	149	2.6	0
Garfield	1	*	0	0.0	1	*	0	0.0	0	0.0	1998	144	2.5	0
Grant	3	*	1	*	7	7.8	7	7.7	6	6.5	1999	186	3.2	0
Grays Harbor	1	*	0	0.0	1	*	1	*	2	*	2000	237	4.0	0
Island	0	0.0	2	*	0	0.0	1	*	6	7.5	2001	150	2.5	0
Jefferson	0	0.0	1	*	1	*	4	*	0	0.0	2002	166	2.7	0
King	68	3.6	45	2.3	56	2.9	71	3.6	72	3.6	2003	128	2.1	0
Kitsap	3	*	2	*	0	0.0	6	2.4	1	*	2004	153	2.5	3
Kittitas	2	*	35	85.5	6	14.5	6	14.5	6	14.3	2005	149	2.4	0
Klickitat	1	*	1	*	2	*	3	*	1	*	2006	162	2.5	0
Lewis	1	*	4	*	1	*	2	*	6	7.9	2007	141	2.2	0
Lincoln	0	0.0	0	0.0	0	0.0	0	0.0	1	*	2008	189	2.9	1
Mason	1	*	2	*	0	0.0	1	*	2	*	2009	206	3.1	0
Okanogan	1	*	3	*	1	*	1	*	2	*	2010	226	3.4	1
Pacific	1	*	1	*	1	*	0	0.0	0	0.0	2011	203	3.0	1
Pend Oreille	0	0.0	1	*	0	0.0	1	*	0	0.0	2012	239	3.5	0
Pierce	11	1.4	11	1.4	22	2.7	11	1.4	14	1.7	2013	330	4.8	3
San Juan	1	*	1	*	0	0.0	0	0.0	2	*	*All rat	es are ca	ases per	100.000
Skagit	4	*	3	*	2	*	4	*	9	7.6	populat	ion.	I -	,
Skamania	0	0.0	0	0.0	1	*	1	*	0	0.0				
Snohomish	32	4.5	23	3.2	27	3.8	21	2.9	42	5.7				
Spokane	10	2.1	11	2.3	14	3.0	13	2.7	19	4.0				
Stevens	0	0.0	1	*	0	0.0	3	*	4	*				
Thurston	12	4.8	6	2.4	11	4.3	13	5.1	20	7.7				
Wahkiakum	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0				
Walla Walla	1	*	2	*	1	*	0	0.0	2	*				
Whatcom	9	4.5	10	5.0	11	5.4	14	6.9	15	7.3				
Whitman	0	0.0	4	*	2	*	3	*	0	0.0				
Yakima	11	4.6	10	4.1	12	4.9	8	3.3	22	8.9				
STATEWIDE TOTAL	206	3.1	226	3.4	203	3.0	239	3.5	330	4.8				

*All rates are cases per 100,000 population. Incidence rates not calculated for <5 cases.

		S	HIG	ELL	OSIS							SHIGE	LLOSI	S
	20	~	200	10		11	20	10	20	12	STA	TEWID	E BY Y	EAR
<u> </u>	20	09 D-4-	20	10 D-4-	20	Dete	20	12 Data	20	13 D-4-	Year	Cases	Rate*	Deaths
County	Cases	Rate	Cases	Rate	Cases	Rate	Cases	Rate	Cases	Rate	1980	287	6.9	0
Adams	0	0.0	0	0.0	0	0.0	0	0.0	20	104.2	1981	426	10.1	1
Asoun	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1982	284	6.6	0
Benton	8	4./	0	0.0	3	~	5	2.8	2	т 4	1983	370	8.6	0
Chelan	2	т О О	2	*	0	0.0	2	*	l	т 0.0	1984	224	5.1	0
Clallam	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1985	144	3.3	0
Clark	5	1.2	7	1.6	12	2.8	14	3.2	11	2.5	1986	321	7.2	0
Columbia	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1987	318	7.0	0
Cowlitz	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1988	306	6.6	0
Douglas	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1989	232	4.9	0
Ferry	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1990	278	5.7	0
Franklin	2	*	1	*	5	6.2	2	*	2	2.4	1991	405	8.1	0
Garfield	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1992	439	8.5	0
Grant	3	*	2	*	0	0.0	1	*	9	9.9	1993	797	15.1	0
Grays Harbor	0	0.0	1	*	1	*	3	*	1	*	1994	478	8.9	0
Island	1	*	1	*	0	0.0	0	0.0	0	0.0	1995	426	7.8	0
Jefferson	0	0.0	0	0.0	2	*	0	0.0	0	0.0	1996	333	6.0	1
King	64	3.4	44	2.3	41	2.1	74	3.8	43	2.2	1997	318	5.6	0
Kitsap	2	*	0	0.0	0	0.0	1	*	3	*	1998	277	4.8	0
Kittitas	0	0.0	0	0.0	1	*	0	0.0	0	0.0	1999	172	2.9	0
Klickitat	0	0.0	0	0.0	1	*	0	0.0	0	0.0	2000	501	8.5	0
Lewis	0	0.0	2	*	0	0.0	0	0.0	1	*	2001	236	4.0	0
Lincoln	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2002	230	3.8	0
Mason	2	*	0	0.0	1	*	2	*	1	*	2003	188	3.1	0
Okanogan	1	*	1	*	0	0.0	0	0.0	0	0.0	2004	133	2.1	0
Pacific	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2005	185	2.9	0
Pend Oreille	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2006	1/0	2.6	0
Pierce	8	1.0	7	0.9	2	*	5	0.6	4	*	2007	159	2.4	0
San Juan	1	*	0	0.0	0	0.0	0	0.0	0	0.0	2008	110	1.8	0
Skagit	3	*	5	43	8	6.8	1	*	0	0.0	2009	155	2.3	0
Skamania	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2010	112	1./	0
Snohomish	15	2.1	13	1.8	9	13	16	2.2	8	11	2011	104	1.3	0
Spokane	4	*	3	*	4	*	1	*	3	*	2012	133	2.0	0
Stevens	0	0.0	0	0.0	- 0	0.0	0	0.0	0	0.0	2015 * All rot	122	1.0	100.000
Thurston	1	*	2	*	1	*	2	*	1	*	nonulati	on	ses per	100,000
Wahkiakum	0	0.0	0	0.0	0	0.0	2	0.0	0	0.0	populati	011.		
Walla Walla	21	25.0	0	0.0	0	0.0	0 2	*	0	0.0				
walla walla	21	33.9 *	10	0.0	0	*	ے 1	*	5	0.0				
w natcom	3	0.0	1ð 1	6.9 *	2		1	0.0	3 1	∠.4 *				
w nitman	0	0.0	1	т 4	0	0.0	0	U.U	I	т О 4				
	/	2.9	2	17	104	4.5	122	2.0	0	2.4				

 STATEWIDE TOTAL
 153
 2.3
 112
 1.7
 104
 1.5
 133
 2.0
 122
 1.8

 *All rates are cases per 100,000 population. Incidence rates not calculated for <5 cases.</td>

SYPHILIS (PRIMARY AND SECONDARY)											SYPHILIS			
-	20	09	20	10	20	11	20	12	20	13	PRIMA	ARY AN	D SEC	ONDARY
County	Cases	Rate	Cases	Rate	Cases	Rate	Cases	Rate	Cases	Rate	STA	TEWI	DE BY	YEAR
Adams	0	0.0	0	0.0	0	0.0	0	0.0	0	+	Year	Cases	Rate*	Deaths
Asotin	0	0.0	0	0.0	0	0.0	0	0.0	0	+	1980	262	6.3	8
Benton	0	0.0	2	*	1	*	0	0.0	7	+	1981	167	3.9	2
Chelan	0	0.0	1	*	0	0.0	0	0.0	0	+	1982	172	4.0	0
Clallam	1	*	0	0.0	0	0.0	0	0.0	0	+	1983	196	4.6	0
Clark	4	*	6	1.4	5	1.2	23	5.3	22	5.1	1984	158	3.6	2
Columbia	1	*	0	0.0	0	0.0	0	0.0	0	+	1985	115	2.6	2
Cowlitz	1	*	1	*	0	0.0	1	*	1	+	1986	194	4.3	0
Douglas	0	0.0	0	0.0	0	0.0	0	0.0	0	+	1987	176	3.9	0
Ferry	0	0.0	0	0.0	0	0.0	0	0.0	0	+	1988	265	5.7	0
Franklin	0	0.0	2	*	5	6.2	3	*	4	+	1989	461	9.8	0
Garfield	0	0.0	0	0.0	0	0.0	0	0.0	0	+	1990	354 179	7.3	0
Grant	0	0.0	0	0.0	2	*	1	*	1	+	1991	1/8	3.5 1.7	0
Gravs Harbor	0	0.0	0	0.0	0	0.0	0	0.0	0	+	1992	83 67	1./	0
Island	0	0.0	1	*	0	0.0	ů 0	0.0	2	+	1995	26	1.5	0
Iefferson	1	*	1	*	0	0.0	0 0	0.0	0	+	1994	17	0.7	0
King	97	51	212	11.0	235	12.1	210	10.7	174	8.8	1995	0	0.3	0
Kitsan	5	2.0	4	*	5	2.0	5	2.0	4	+	1990	17	0.2	0
Kittitas	0	0.0	0	0.0	1	*	1	*	3	+	1998	44	0.5	0
Klickitat	0	0.0	0	0.0	0	0.0	0	0.0	0	+	1999	77	13	0
Lewis	0	0.0	0	0.0	1	*	0	0.0	0	+	2000	66	1.1	0 0
Lincoln	0	0.0	0	0.0	0	0.0	0	0.0	0	+	2001	57	1.0	0
Mason	0	0.0	0	0.0	0	0.0	2	*	0	+	2002	70	1.2	0
Okanogan	0	0.0	0	0.0	0	0.0	0	0.0	0	+	2003	82	1.3	0
Dacific	0	0.0	0	0.0	0	0.0	0	0.0	0	' +	2004	150	2.4	0
Pend Oreille	0	0.0	0	0.0	0	0.0	0	0.0	0	+	2005	152	2.4	0
Diarca	0	0.0	0	1.1	27	0.0 3.4	22	0.0	28	3 1	2006	182	2.8	0
San Juan	9	1.1	9	1.1	27	0.0	0	2.7	20	5.4 +	2007	168	2.6	0
Skagit	0	0.0	0	0.0	0	0.0	1	*	2	_	2008	181	2.7	0
Skagn	0	0.0	0	0.0	1	*	1	0.0	2	, T	2009	135	2.0	0
Skalliallia	5	0.0	10	0.0	16		12	0.0	12	T 1 Q	2010	261	3.9	0
Shohona	5 7	0.7	10	1.4	10	2.2	12	1./	15	1.0	2011	329	4.9	0
Spokalle	/	1.5	4	*	14	5.0 *	5	1.1	2	+	2012	300	4.4	0
Thurston	0	0.0 *	1	*	1	*	0	0.0	0	- -	2013	285	4.1	0
I nursion	2	0.0	1	0.0	3		2		3	+	*All rate	s are cas	ses per 1	00,000
wankiakum	0	0.0	0	0.0	0	0.0	0	0.0	0	+	populatio	on.		
walla walla	0	0.0	0	0.0	0	U.U	0	U.U	0	+	Note: Da	ta prior	to 2009	are based
wnatcom	0	0.0	0	0.0	3	*	4	т 	2	+	on year r	eported	rather th	an year
w hitman	0	0.0	0	0.0	0	0.0	2	* • •	0	+	diagnose	d.		
Y akima	2	*	6	2.5	9	3.7	6	2.4	14	5.7				
STATEWIDE TOTAL	135	2.0	261	3.9	329	4.9	300	4.4	285	4.1				

All incidence rates are cases per 100,000 population.

*For 2009-2012, incidence rates not calculated for <5 cases.

+For 2013, incidence rates suppressed for counts <20 and rates with residual standard error

(RSE) > 30% due to statistical instability.

	TETA	ANUS			TRICHINOSIS						
Year	Cases	Rate*	Deaths	Year	Cases	Rate*	Deaths				
1985	0	0.0	0	1986	0	0.0	0				
1986	0	0.0	0	1987	0	0.0	0				
1987	1	0.0	0	1988	0	0.0	0				
1988	1	0.0	0	1989	2	0.0	0				
1989	1	0.0	0	1990	1	0.0	0				
1990	1	0.0	0	1991	0	0.0	0				
1991	1	0.0	0	1992	1	0.0	0				
1992	3	0.1	0	1993	1	0.0	0				
1993	1	0.0	0	1994	0	0.0	0				
1994	1	0.0	0	1995	0	0.0	0				
1995	0	0.0	0	1996	0	0.0	0				
1996	1	0.0	0	1997	0	0.0	0				
1997	1	0.0	0	1998	0	0.0	0				
1998	0	0.0	0	1999	0	0.0	0				
1999	0	0.0	0	2000	1	0.0	0				
2000	1	0.0	0	2001	0	0.0	0				
2001	0	0.0	0	2002	0	0.0	0				
2002	0	0.0	0	2003	0	0.0	0				
2003	0	0.0	0	2004	0	0.0	0				
2003	0	0.0	0	2005	0	0.0	0				
2005	1	0.0	0	2006	1	0.0	0				
2005	0	0.0	0	2007	0	0.0	0				
2000	0	0.0	0	2008	0	0.0	0				
2007	0	0.0	0	2009	0	0.0	0				
2008	0	0.0	0	2010	0	0.0	0				
2009	0	0.0	0	2011	0	0.0	0				
2011	0 0	0.0	ů 0	2012	0	0.0	0				
2012	1	0.0	ů 0	2013	0	0.0	0				
2013	0	0.0	0	*All rates	are cases pe	r 100,000 p	oopulation.				

*All rates are cases per 100,000 population.

		TU	BER	CUL	OSIS	5						TUBER	CULOS	SIS
	200	09	20	10	20	11	20	12	20	13	ST	ATEWI	DE BY	YEAR
County	Cases	Rate	Cases	Rate	Cases	Rate	Cases	Rate	Cases	Rate	Year	Cases	Rate*	Deaths
Adams	0	0.0	1	*	0	0.0	0	0.0	1	*	1980	424	10.3	13
Asotin	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1981	401	9.5	15
Benton	3	*	3	*	0 0	0.0	0	0.0	1	*	1982	301	7.0	6
Chelan	2	*	3	*	0 0	0.0	0 0	0.0	2	*	1983	239	5.5	10
Clallam	-	*	0	0.0	2	*	0 0	0.0	1	*	1984	207	4.8	6
Clark	16	38	22	5.2	10	23	7	1.6	5	11	1985	220	5.0 4.0	3
Columbia	0	0.0	1	*	0	0.0	0	0.0	0	0.0	1980	218	4.9 5.6	10
Cowlitz	0 0	0.0	0	0.0	1	*	0	0.0	2	*	1988	235	5.0	9
Douglas	0	0.0	1	*	0	0.0	0 0	0.0	1	*	1989	248	5.1	4
Ferry	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1990	284	5.8	12
Franklin	1	*	ů 4	*	3	*	3	*	2	*	1991	309	6.2	7
Garfield	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1992	306	6.0	7
Grant	3	*	2	*	0	0.0	1	*	0	0.0	1993	286	5.4	7
Gravs Harbor	0	0.0	0	0.0	1	*	2	*	1	*	1994	264	4.9	6
Island	2	*	2	*	2	*	0	0.0	1	*	1995	278	5.1	2
Iefferson	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1996	285	5.1	3
King	130	6.8	114	59	106	5 5	108	5 5	114	5.8	1997	305	5.4	6
Kitsan	4	*	0	0.0	2	*	4	*	1	*	1998	265	4.6	5
Kittitas	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1999	258	4.4	5
Klickitat	1	*	1	*	0	0.0	0	0.0	0	0.0	2000	258	4.4	2
Lewis	1	*	1	*	0	0.0	0	0.0	0	0.0	2001	261	4.4	6
Lincoln	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2002	252	4.2	4
Mason	2	*	2	*	1	*	2	*	3	*	2003	250	4.1	0
Okanogan	0	0.0	0	0.0	0	0.0	0	0.0	2	*	2004	244	3.9 4.0	9 14
Pacific	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2005	254	4.0	14
Pend-Oreille	0		0		0		0		0	0.0	2000	202	4.5	10
Pierce	34	4.3	15	1.9	25	3.1	19	2.4	22	2.7	2008	228	3.5	2
San Juan	0	0.0	1	*	0	0.0	0	0.0	1	*	2009	256	3.8	7
Skagit	2	*	1	*	2	*	3	*	3	*	2010	236	3.5	7
Skamania	0	0.0	0	0.0	0	0.0	0	0.0	1	*	2011	200	3.0	8
Snohomish	28	4.0	26	3.6	24	3.3	18	2.5	26	3.6	2012	185	2.7	10
Spokane	9	1.9	4	*	8	1.7	7	1.5	7	1.5	2013	209	3.0	+
Stevens	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	*All rates	are cases	per 100,0)00
Thurston	8	3.2	14	5.5	5	2.0	5	1.9	5	1.9	Tubercul	II. Sois relate	d deaths i	nclude
Wahkiakum	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0		lacased (t diagnos	is for whom
Walla Walla	0	0.0	2	*	0	0.0	0	0.0	1	*	tuberculo	sis was re	n ulagilos	nong cause(s)
Whatcom	3	*	6	3.0	2	*	1	*	4	*	of death;	and	1	8
Whitman	1	*	1	*	0	0.0	0	0.0	0	0.0	2. Cases a	alive at dia	agnosis st	opping
Yakima	5	2.1	9	3.7	6	2.5	5	2.0	2	*	treatment	prematur	ely, for w	hom the
STATEWIDE TOTAL	256	3.8	236	3.5	200	3.0	185	2.7	209	3.0	reason for	treatmen	t stoppag	e was

*All rates are cases per 100,000 population. Incidence rates not calculated for <5 cases.

2. Cases alive at diagnosis stopping treatment prematurely, for whom the reason for treatment stoppage was reported as being TB-related death. Note: Death events reported here may not have occurred within the same year of case reporting for surveillance purposes, and are not confirmed against death certificate data.

+2013 death data not available at time of this report.

	TULAI	REMIA			TYPHOID FEVER					
Year	Cases	Rate*	Deaths	_	Year	Cases	Rate*	Deaths		
1986	1	0.0	0		1985	3	0.1	0		
1987	4	0.1	0		1986	3	0.1	0		
1988	1	0.0	0		1987	9	0.2	0		
1989	2	0.0	0		1988	13	0.3	0		
1990	4	0.1	0		1989	11	0.2	0		
1991	2	0.0	0		1990	22	0.5	0		
1992	2	0.0	0		1991	10	0.2	0		
1993	2	0.0	0		1992	11	0.2	0		
1994	1	0.0	0		1993	8	0.2	0		
1005	1	0.0	0		1994	12	0.2	0		
1996	+ 2	0.1	0		1995	4	0.1	0		
1997	2	0.0	0		1996	4	0.1	0		
1998	2	0.1	0		1997	7	0.1	0		
1999	° 2	0.0	0		1998	8	0.1	0		
2000	2	0.0	0		1999	8	0.1	0		
2000	5	0.0	0		2000	6	0.1	0		
2001	2	0.1	0		2001	7	0.1	0		
2002	2 2	0.0	0		2002	7	0.1	0		
2003	ے ۱	0.0	0		2003	4	0.1	0		
2004	4	0.1	0		2004	6	0.1	0		
2005	10	0.2	0		2005	11	0.2	0		
2006	1	0.0	0		2006	7	0.1	0		
2007	l	0.0	0		2007	7	0.1	0		
2008	4	0.1	0		2008	15	0.2	0		
2009	5	0.1	1		2009	4	0.1	0		
2010	3	0.0	0		2010	22	0.3	0		
2011	5	0.1	0		2011	9	0.1	0		
2012	5	0.1	0		2012	11	0.2	0		
2013	5	0.1	0	-	2013	11	0.2	0		

*All rates are cases per 100,000 population.

*All rates are cases per 100,000 population.

Year	Cases	Rate*	Deaths
1985	4	0.1	0
1986	7	0.2	0
1987	18	0.4	0
1988	11	0.2	0
1989	4	0.1	0
1990	30	0.6	0
1991	4	0.1	0
1992	7	0.1	0
1993	33	0.6	0
1994	9	0.2	0
1995	6	0.1	0
1996	3	0.1	0
1997	58	1.0	0
1998	41	0.7	0
1999	21	0.4	0
2000	20	0.3	0
2001	9	0.2	0
2002	25	0.4	0
2003	18	0.3	0
2004	28	0.5	0
2005	20	0.3	0
2006	80	1.2	0
2007	25	0.4	0
2008	29	0.4	0
2009	48	0.7	0
2010	59	0.9	0
2011	45	0.7	0
2012	67	1.0	0
2013	90	1.3	0

VIBRIOSIS

*All rates are cases per 100,000 population.

YERSINIOSIS										YERSINIOSIS				
	20	09	20	10	20	11	20	12	20	13	STA	TEWII	DE BY Y	EAR
County	Cases	Rate	Year	Cases	Rate*	Deaths								
Adams	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1988	15	0.3	0
Asotin	0	0.0	0	0.0	1	*	0	0.0	0	0.0	1989	40	0.8	0
Benton	0	0.0	1	*	1	*	1	*	2	*	1990	37	0.8	0
Chelan	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1991	28	0.6	0
Clallam	0	0.0	0	0.0	1	*	0	0.0	0	0.0	1992	34 50	0.7	0
Clark	1	*	1	*	1	*	0	0.0	1	*	1993	50 40	0.9	0
Columbia	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1994	40 50	0.7	0
Cowlitz	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1995	30 27	0.9	0
Douglas	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1990	30	0.7	0
Ferry	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1997	30	0.5	0
Franklin	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1998	32	0.7	0
Garfield	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2000	33	0.5	0
Grant	0	0.0	1	*	0	0.0	0	0.0	0	0.0	2001	23	0.0	0
Grays Harbor	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2002	26	0.4	0
Island	1	*	0	0.0	0	0.0	0	0.0	0	0.0	2003	28	0.5	0
Jefferson	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2004	34	0.5	0
King	7	0.4	8	0.4	5	0.3	23	1.2	14	0.7	2005	19	0.3	0
Kitsap	0	0.0	1	*	2	*	1	*	1	*	2006	22	0.3	0
Kittitas	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2007	28	0.4	0
Klickitat	0	0.0	0	0.0	0	0.0	0	0.0	2	*	2008	19	0.3	1
Lewis	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2009	15	0.2	0
Lincoln	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2010	25	0.4	0
Mason	1	*	0	0.0	0	0.0	0	0.0	2	*	2011	21	0.3	0
Okanogan	0	0.0	1	*	0	0.0	0	0.0	0	0.0	2012	36	0.5	0
Pacific	0	0.0	0	0.0	0	0.0	0	0.0	1	*	2013	34	0.5	0
Pend Oreille	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	*All rat	es are ca	ises per	100,000
Pierce	1	*	1	*	2	*	1	*	0	0.0	populati	on.		
San Juan	0	0.0	0	0.0	0	0.0	0	0.0	1	*				
Skagit	0	0.0	0	0.0	0	0.0	0	0.0	1	*				
Skamania	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0				
Snohomish	4	*	5	0.7	5	0.7	4	*	4	*				
Spokane	0	0.0	2	*	0	0.0	1	*	0	0.0				
Stevens	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0				
Thurston	0	0.0	1	*	1	*	1	*	1	*				
Wahkiakum	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0				
Walla Walla	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0				
Whatcom	0	0.0	0	0.0	1	*	2	*	2	*				
Whitman	0	0.0	0	0.0	0	0.0	1	*	0	0.0				
Yakima	0	0.0	3	*	1	*	1	*	2	*				
STATEWIDE TOTAL	15	0.2	25	0.4	21	0.3	36	0.5	34	0.5				

*All rates are cases per 100,000 population. Incidence rates not calculated for <5 cases.

APPENDIX II

Special Topics

Local Health Jurisdiction Contributors are acknowledged for special topics.

Public Health Seattle King County

A child adopted from China developed measles upon arrival to Washington. This measles case was one of several among adoptees from the same orphanage (the other adoptees resided in other areas of the United States). CDC worked with health officials in China to evaluate all children from the originating orphanage for measles and to recommend all adoptees be screened for fever and rash illness, and measles immunity be verified for those with imminent departure. The associated MMWR is available here http://www.cdc.gov/mmwr/ preview/mmwrhtml/mm6314a1.htm.

Highly Antibiotic Resistant Bacterial Surveillance Carbapenem-resistant Enterobacteriaceae (CRE)

In 2012, the Washington State Department of Health began tracking carbapenem-resistant Enterobacteriaceae (CRE). Goals of surveillance were to learn how common these organisms are in Washington, to determine the proportion of CRE that produce a carbapenemase (an enzyme inactivating certain antibiotics), and to educate healthcare providers and facilities regarding infection prevention interventions to limit the spread of CRE in Washington.

CRE are highly antibiotic resistant bacteria that are important causes of healthcare-associated infections. CRE that produce a carbapenemase, such as *Klebsiella pneumoniae* carbapenemase (KPC), New Delhi metallo-b-lactamases (NDM), Verona integron-encoded metallo-b-lactamases (VIM), imipenemase (IMP), and oxacillinase-48-like (OXA-48), are considered epidemiologically important because they can spread exponentially in healthcare settings, as evidenced by the rapid increase in CRE in the United States over the past decade.

The Washington state surveillance case definition for CRE through December 2013 was

E. coli, Klebsiella species or *Enterobacter* species non-susceptible to one or more carbapenems and resistant to all third generation cephalosporins tested;

OR

Any Enterobacteriaceae (other than those above) non-susceptible to 2 or more carbapenems and resistant to all third generation cephalosporins tested.

Isolates that met these criteria after confirmatory antimicrobial sensitivity testing at the Public Health Laboratories, as well as isolates that were Modified Hodge Test positive, underwent polymerase chain reaction (PCR) testing to detect presence of for carbapenemase.

Recently updated information submitted by providers and laboratories in the state revealed that 8 carbapenemase-producing CRE (CP-CRE) had been confirmed by PCR testing and reported to the Washington State Department of Health (DOH) prior to the beginning of systematic surveillance for CRE in October 2012: 2 VIM, 2 KPC, 2 NDM, 1 IMP, and 1 OXA-48. The origin of these CP-CRE isolates was out-of-state or international medical care, including 3 CP-CRE isolates in a single patient who had healthcare in India.

This report includes all CRE reported in 2013 and all those collected in 2013 (before the surveillance strategy changed on January 1, 2014). DOH Public Health Laboratories tested 130 CRE submitted by clinical labs. Of these, 108 (83%) were confirmed at PHL to meet the CRE surveillance case definition by antimicrobial sensitivity testing and 10 of 108 (9%) tested positive by PCR for carbapenemase. Of these 10 were CP-CRE, 5 were KPC, 3 were NDM, and were 2 IMP (both from the same patient).

Of 10 CP-CRE isolates in 9 persons, 2 had no out of state medical care or travel in the 6 months prior to diagnosis, 3 had recently been hospitalized in another state, and 4 had received healthcare internationally. Though the majority of cases have out of state or international health care exposure, surveillance findings suggest that KPC are circulating in the state.

Carbapenemases in Species other than Enterobacteriaceae

In 2013, a Washington resident suffered a broken bone while traveling on the Indian subcontinent. He required surgery abroad before returning home for further care. Cultures of his wound grew several highly antibiotic resistant gram negative bacteria. Final results included *Acinetobacter baumanii* positive by PCR for NDM, and *Pseudomonas stutzeri* positive for NDM and VIM. Although carbapenemases are not uncommon in *Acinetobacter* spp., this is the first report of NDM-positive *Pseudomonas* in the United States. NDM-positive *Pseudomonas aeruginosa* has been detected in Europe after its initial report in Serbia in 2011. VIM-positive *Pseudomonas* has been reported in the US before. Nosocomial outbreaks caused by carbapenemase-producing *P. aeruginosa* have been reported in several countries worldwide.

Healthcare Associated Infections (HAI) Program

The Healthcare Associated Infections (HAI) Program was established in 2008 within the Office of the Assistant Secretary and is currently located in the Office of Communicable Disease Epidemiology. The program oversees the submission, analysis and public reporting of required HAI information, per <u>RCW 43.70.056</u>. Currently, all state-licensed, acute care hospitals are required to collect and submit data on the following:

- Central line-associated bloodstream infections (CLABSI) in all hospital inpatient areas where patients normally reside at least twenty-four hours; and
- Surgical site infections (SSI) for sternal incision cardiac surgery, coronary artery bypass graft, hip and knee replacement surgery, colon and abdominal hysterectomy procedures.

Hospitals are required to report HAI data through CDC's National Healthcare Safety Network (NHSN). The program routinely analyzes hospital HAI surveillance data to produce annual public reports. Reporting accuracy is validated using quality sciences methods through "internal" hospital infection surveillance accuracy self-assessments, and "external" site visits by program staff performing medical record audits.

Central Line-Associated Bloodstream Infection (CLABSI) Validation Findings, 2009-2013

Washington State CLABSI reporting between 2009 and August 2013 was limited to hospital intensive care units (ICU), with 65 hospitals required to participate. All participated in annual "internal" validation and each received at least one "external" validation visit between 2010 and 2013. Validation uses International Standards Organization (ISO) 2859 acceptance sampling to ensure hospital CLABSI surveillance accuracy remains consistent with 85% sensitivity and 98% specificity. Most hospitals exceed the department's accuracy standards. For those that do not, corrective actions focused on communication gaps between infection control staff and the clinical laboratory, and application of NHSN surveillance definitions. Overall validation findings support reports that Washington State has among the lowest US CLABSI rates.

"External" validation assesses surveillance and clinical CLABSI records to estimate the burden and distribution of CLABSI hospital-wide. The department estimates Washington State has 2,250 to 3,650 CLABSI cases per year, with ~11% attributable to ICUs, ~21% attributable to lower-acuity wards, and ~67% present on hospital admission.

CLABSI can present as early-onset (\leq a week), likely from contamination during central line insertion, or lateonset, likely from lapses in care during line access or maintenance. Review of CLABSI validation identified a greater number of hospital associated infections occurring in the late-onset period (~65% after day seven).

Hospital resources needed for annual "internal" validation were ~6 hours/year. For "external" validation visits, 89% took ≤ 1 day (only the most complicated patient settings required ~2 days). Department resources for CLABSI ICU validation and data quality activities require ~0.5 full-time equivalents. Validation findings were used to:

Expand CLABSI reporting to all Washington State hospital inpatient areas (Aug 2013);

- Recommend departmental authority extend to all facilities where CLABSI risk is present to encompass the full spectrum of CLABSI for prevention
- Reinforce infection control and prevention emphasis on central line maintenance best practices throughout the hospital, in addition to the focus on insertion practices; and

Support annual validation expansion to SSI reporting in 2014.

The cooperation and support of Washington's hospitals and infection preventionists has enabled the HAI Program to run efficient and effective annual HAI validation.

FOODBORNE DISEASE OUTBREAKS, 2013

Foodborne disease outbreaks are caused by a variety of agents including viruses, bacteria, toxins and parasites. A foodborne disease outbreak is defined as the occurrence of two or more cases of the same illness resulting from the ingestion of a common food where food is implicated as the source of illness. Outbreaks of foodborne disease are reportable to Department of Health (DOH) as outlined in WAC 246-101-510. In Washington, there are typically 25 to 50 outbreaks of foodborne disease reported every year.

In 2013, 37 outbreaks of foodborne disease were reported to DOH (Table 7). Foodborne disease outbreaks are detected through public health surveillance and investigation of cases of notifiable conditions (e.g., bacterial agents such as *Salmonella* and *E. coli*) or by notification from members of the public or food establishments (mainly viral gastroenteritis and bacterial toxin outbreaks).

Year	Cases	Outbreaks
2007	722	43
2008	564	46
2009	307	27
2010	344	37
2011	371	30
2012	552	27
2013	437	37

Table 9. Foodborne Disease Outbreaks, 2007 – 2013

Outbreaks occurred in a wide range of settings in 2013. Restaurants were the most frequently reported setting, accounting for two thirds of outbreaks. Other settings included catered meals, commercially distributed products, markets, and private residences. The agents associated with foodborne disease outbreaks in 2013 are shown in Table 8.

Agent	Outbreaks	Cases
Bacterial		
Salmonella	4	28
STEC	4	8
Vibrio parahaemolyticus	2	10
Campylobacter	2	10
Viral		
Confirmed Norovirus	9	278
Suspect Norovirus	12	84
Toxins		
Staphylococcus	1	3
Scombroid/histamine	1	3
Chemicals	1	9
Unknown Agent	1	4

Table 10. Agents associated with Foodborne Disease Outbreaks, 2013

Each outbreak of foodborne illness is investigated to determine contributing factors. A contributing factor is a fault or circumstance that singly or in combination led to the outbreak of foodborne illness. Contributing factors may include food handling practices which lead to the contamination of a food, and/or the proliferation, amplification or survival of an agent. A single outbreak may have multiple contributing factors identified during an investigation.

In 2013, there were 21 foodborne disease outbreaks confirmed or suspected to be due to *Norovirus*. Typically, outbreaks of *Norovirus* involve factors related to a suspected infectious individual who had contact with food. These factors included evidence of inadequate handwashing practices and/or bare hand contact with ready-to-eat foods.

In 2013, there were 12 bacterial outbreaks. Contributing factors most frequently associated with bacterial outbreaks included consumption of food that was intended to be consumed raw or undercooked, and food that was intended to be consumed after a kill step (e.g. heating to kill bacteria) that was inadequate.

Additionally, 2 bacterial toxin outbreaks were reported in 2013. Contributing factors associated with bacterial toxin outbreaks included improper hot holding, insufficient time/temperature during reheating, improper slow cooling and lack of control on time/temperature of the implicated food.

Additionally, in 2013 there was one outbreak in which no causative agent was identified.

Foodborne outbreaks reported in Washington during 2013 are summarized in Table 9.

$\mathbf{\omega}$
5
ล
ſ
th
al
Ĕ
Ξ
÷
•
It
G
В
Ð
a
ġ
ě
fe
a
z
Ĩ
E
Ŧ.
·Ξ
- F
ā
\geq
5
-
ē
rtec
orted
eportec
Reported
s Reported
ks Reported
aks Reported
reaks Reported
breaks Reported
utbreaks Reported
Jutbreaks Reported
Outbreaks Reported
se Outbreaks Reported
ase Outbreaks Reported
sease Outbreaks Reported
Disease Outbreaks Reported
Disease Outbreaks Reported
ne Disease Outbreaks Reported
rne Disease Outbreaks Reported
orne Disease Outbreaks Reported
lborne Disease Outbreaks Reported
odborne Disease Outbreaks Reported
oodborne Disease Outbreaks Reported
Foodborne Disease Outbreaks Reported
 Foodborne Disease Outbreaks Reported
11. Foodborne Disease Outbreaks Reported
e 11. Foodborne Disease Outbreaks Reported
ole 11. Foodborne Disease Outbreaks Reported
able 11. Foodborne Disease Outbreaks Reported

#	Local Health Jurisdiction	Month	Illness Agent	# Confirmed Cases	# Probable Cases	Total # Cases	Exposure Source	Contributing Factors	Setting
1	Benton- Franklin	January	Norovirus	4	50	54	Catered sandwich- es	Unknown	Catered lunch
7	King	January	Suspect Norovirus	0	16	16	Catered office meal	Contamination by an infectious food handler	Catered meeting
3	Pierce	January	Unknown	0	4	4	Oyster shooters	Contaminated raw product	Restaurant
4	Pierce	January	E. coli 0121	1	0	1	Microwavable	Unknown	Distributed product
							frozen food; part of multi-state clus-		
5	Snohomish	February	Suspect Norovirus	0	5	5	Restaurant meal	Contamination and bare and gloved-hand	Restaurant
,				0				contact by an infectious food handler	
9	Clark	February	Norovirus	2	38	40	Restaurant meal	Contamination by infectious food handler	Restaurant
٢	King	February	Suspect Norovirus	0	6	9	Restaurant meal	Contamination by infectious food handler	Restaurant
8	Skagit	February	Suspect Norovirus	0	9	9	Raw produce	Contamination and gloved-hand contact by an infectious food handler	Restaurant
6	Multiple	February	STEC 0157:H7	ε	0	3	Beef suspected	Unknown	Restaurant
10	Multiple	March	Salmonella Reading	1	0	-1	Oysters; multi- state cluster	Unknown	Distributed product
11	King	March	Norovirus	0	13	13	Restaurant meal	Contamination, other source	Restaurant
12	Pierce	March	Norovirus	9	66	72	Hamburger buns,	Contamination and bare and gloved-hand	Restaurant
							salads, sandwiches	contact by an infectious food handler	
13	Yakima	March	Norovirus	7	9	8	Deli meal	Contamination and gloved-hand contact by an infectious food handler	Deli meal eaten at home
14	Multiple	April	Salmonella Heidel- berg	16	0	16	Chicken	Cross-contamination of ingredients, contam- inated product	Distributed product
15	King	April	Norovirus	4	10	14	Unknown	Bare and gloved-hand contact by an infec- tious food handler and improper cold hold-	Restaurant
16	King	May	Suspect Norovirus	0	8	8	Unknown	Contamination by an infectious food handler	Restaurant
17	Skagit	May	Suspect Norovirus	0	10	10	Salad	Unknown	Restaurant
18	Thurston	May	E. coli 026	1	0	1	Unknown	Multi-state outbreak associated with chain restaurant	Restaurant
19	Yakima	June	Norovirus	9	46	52	Unknown	Contamination and gloved-hand contact by an infectious food handler	Catered event
20	Pierce	June	Norovirus	2	22	24	Salad, bread	Contamination and bare-hand contact by infectious food handler	Banquet facility
21	King	June	Campylobacter	2	0	2	Unknown	None	Restaurant
22	King	July	Suspected Vibrio parahaemolyticus	0	5	5	Oysters	Contaminated raw product	Restaurant

Table 11 continued. Foodborne Disease Outbreaks Reported to Washington State Department of Health, 2013

Setting	Distributed product served at restaurant	Restaurant	Camp	Banquet facility	Catered picnic	Restaurant	Restaurant	Distributed product	Restaurant	Restaurant	Restaurant	Potluck	Restaurant	Restaurant	Restaurant
Contributing Factors	Contaminated raw product, part of multi- state outbreak associated with distributed	Contaminated raw product	Undercooking of frozen distributed prod- uct	Glove-hand contact by infectious food handler, and other source of contamina- tion by a food handler; part of Oregon	Cross-contamination of ingredients	Other source of contamination	Bare and glove-hand contact by infec- tious food handler, and other source of	Contaminated raw product, part of multi- state outbreak of distributed product	Glove- hand contact by infectious food handler, and other source of contarnina- tion by a food handler	Glove- hand contact by infectious food handler, other source of contamination	Toxic substance part of the tissue	Other source of contamination	Unknown	Other source of contamination	Glove- hand contact by infectious food handler, other source of contamination by a food handler, and other source of
Exposure Source	Sugar cane juice	Raw oysters	Chicken Cordon Bleu suspected	Catered event	Catered picnic	Unknown	Unknown	Pre-packaged salad	Unknown	Chicken suspected	Spicy tuna roll sus- pected	Chili	Unknown	Unknown	Tomato and chips suspected
Total # Cases	1	5	10	1	4	5	5	3	3	3	c,	6	7	8	9
# Probable Cases	0	3	9	1	0	S	Ś	0	3	3	ε	6	7	8	6
# Confirmed Cases	1	2	4	0	4	0	0	3	0	0	0	0	0	0	0
Illness Agent	Salmonella Virchow	Vibrio parahaemo- lyticus	<i>Salmonella</i> Enter- itidis	Norovirus	Campylobacter	Suspect Norovirus	Suspect Norovirus	E. coli 0157:H7	Suspect Norovirus	Staphylococcus aureus (preformed enterotoxin) sus-	Suspected scom- broid	Chemical identified	Suspect Norovirus	Suspect Norovirus	Suspect Norovirus
Month	July	July	August	August	September	September	October	October	November	November	November	December	December	December	December
Local Health Jurisdiction	King	Multiple	King	Clark	King	King	Pierce	Multiple	King	Pierce	Clark	Pierce	King	King	Pierce
#	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37

INFLUENZA SURVEILLANCE, 2013–2014

The Washington State Department of Health (DOH), in collaboration with local health jurisdictions and CDC, performed surveillance for influenza during the 2013–2014 season using several different systems. This report summarizes data collected during July 21, 2013 – July 19, 2014 through key systems.

Overall Summary

Overall, influenza activity during the 2013–2014 influenza season was moderately severe, reaching peak activity in Washington during surveillance week 1 (the week ending January 4, 2014). The predominant viruses circulating throughout the state were influenza A (2009 H1N1) viruses, which were part of the trivalent and quadrivalent seasonal vaccines for 2013-2014.

World Health Organization/National Respiratory and Enteric Virus Surveillance System (WHO/NREVSS)

Five laboratories in Washington participate in the WHO/NREVSS surveillance network: The Washington State Public Health Laboratories (WAPHL), Public Health – Seattle & King County Public Health Laboratory (PHSKC), Spokane Regional Health District Laboratory, University of Washington Virology Laboratory, and Seattle Children's Hospital Laboratory. Participating laboratories report the total number of positive influenza tests, by virus type/subtype, and the percent of specimens testing positive each week.

Of 1,401 specimens which tested positive for influenza during July 21, 2013 – July 19, 2014, 1,288 (92%) were influenza A and 113 (8%) were influenza B. Of the subtyped influenza A specimens, 1,041 (81%) were influenza A (2009 H1N1) viruses, 99 (8%) were influenza A (H3N2) viruses, and 148 (11%) were unsub-typed influenza A viruses.

Figure 1. Influenza positive tests reported to CDC by WHO/NREVSS collaborating laboratories, Washington, 2013-2014

Antigenic Characterization

During the 2013–2014 season, the circulating viruses were well-matched to the strains included in the vaccine.

Antigenic characterization was performed on 82 influenza viruses from Washington during this season. All 47 influenza A (2009 H1N1) viruses were characterized as A/California/07/2009-like, the influenza A (H1N1) component of the 2013–2014 vaccine. All 20 influenza A(H3N2) viruses were characterized as A/ Texas/50/2012-like, the influenza A (H3N2) component of the 2013–2014 vaccine. Ten influenza B viruses were characterized as B/Massachusetts/02/2012-like, the influenza B component of the trivalent 2013–2014 vaccine. Five influenza B viruses were characterized as B/Brisbane/60/2008-like, an additional influenza B component of the quadrivalent 2013–2014 vaccine.

Antiviral Resistance Testing and Novel Influenza A Viruses

Of more than 140 influenza A (2009 H1N1) viruses tested at WAPHL or CDC this season, one had the H275Y mutation, and no novel influenza viruses were detected in Washington during the season.

Public Health Reporting of Aggregate Influenza Data (PHRAID)

Select commercial laboratories in Western Washington report the number of influenza tests performed and the number positive for influenza A and B viruses each week through PHRAID. During July 21, 2013 – July 19, 2014, of the total 29,794 flu tests performed, 3,738 (12.5%) were positive for influenza viruses A, B, or of unknown type.

Figure 2. Aggregate Influenza Testing Results, Western Washington, 2013–2014

Syndromic Surveillance Data

ESSENCE (Electronic Surveillance System for the Early Notification of Community-based Epidemics) WA: The following graphs show the proportion of emergency department visits, by CDC week, for a syndrome of influenza-like illness (ILI). A syndrome of ILI is derived from the chief complaint and is defined as "influenza" OR fever with cough or sore throat. Data are not available for weeks 12-29. Data are not yet available for weeks 12-29.

Figure 3a. Percentage of ER Visits for ILI by CDC Week, Western Washington, 2011–2014

Figure 3b. Percentage of ER Visits for ILI by CDC Week, Eastern Washington, 2011–2014

Outpatient Influenza-like Illness Surveillance Network (ILINet) Data

Information on patient visits to health care providers for influenza-like illness is collected through the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet). Each week, up to 17 outpatient healthcare providers in Washington report data to CDC on the total number of patients seen and the number of those patients with influenza-like illness (ILI) by age group (0-4 years, 5-24 years, 25-49 years, 50-64 years, and \geq 65 years). During July 21, 2013 – July 19, 2014, of the total 240,437 visits reported, 1,737 (0.7%) were due to ILI.

Pneumonia and Influenza (P&I) Mortality*

Death records submitted to the Department are analyzed to determine the proportion of weekly deaths due to pneumonia or influenza (P&I). Figure 5 indicates the weekly proportion of deaths due to P&I during 2009-2014. Data points for the most recent 8-12 weeks do not represent all deaths in the state since there is a delay in submitting death records to the Department.

* P&I Mortality Graph: Weekly data is superimposed on a normative curve (based on 2009 - 2012 flu seasons) and 90% confidence intervals.

Reported Laboratory-Confirmed Influenza-Associated Deaths

During July 21, 2013 – July 19, 2014, 79 laboratory-confirmed influenza-associated deaths were reported to the Department of Health. Reported deaths likely significantly underestimate the true number of deaths due to influenza since many patients with influenza are not tested for the virus and some patients with laboratory-confirmed influenza are not reported to a public health agency. Of these 79 reported deaths, 69 were due to influenza A virus, 4 were due to influenza B virus, and 6 were due to an influenza virus of unknown type. Mortality rates were highest in those 65 years and older. Of 79 cases with available data, 75 (95%) had one or more risk factors known to increase complications from influenza.

Age Group (years)	Deaths	Death Rate (per 100,000 population)
0–4	0	0
5-24	1	0.06
25–49	23	0.99
50-64	26	1.91
65+	29	3.4
Total	79	1.17

Number and rate of reported laboratory-confirmed influenza-associated deaths by age group, Washington, July 2013 – July 2014

Reported Laboratory-confirmed Influenza Hospitalizations (Spokane County Only)

Spokane Regional Health District requires hospitals and providers to report laboratory-confirmed influenzaassociated hospitalizations. During 9/29/13–7/19/14, 185 hospitalizations have been reported among Spokane County residents. Of these 185 patients, 11 were 0-4 years old, 4 were 5-17 years old, 43 were 18-49 years old, 75 were 50-64 years old, and 52 were 65 years or older. More than twice as many adults 18-64 years old have been hospitalized this season compared to last season.

Figure 6a: Laboratory-Confirmed Flu Hospitalization Rates by Age Group (per 100,000), Spokane County, WA 2013–2014

Figure 6b: Laboratory-Confirmed Flu Hospitalizations by Admission Week, Spokane County, WA 2013–2014

APPENDIX III

State Demographics

Washington State Population Estimates, 1985-2013

Year	Estimate
1985	4,415,785
1986	4,462,212
1987	4,527,098
1988	4,616,886
1989	4,728,077
1990	4,866,692
1991	5,021,335
1992	5,141,177
1993	5,265,688
1994	5,364,338
1995	5,470,104
1996	5,567,764
1997	5,663,763
1998	5,750,033
1999	5,830,835
2000	5,894,143
2001	5,970,330
2002	6,059,316
2003	6,126,885
2004	6,208,515
2005	6,298,816
2006	6,420,258
2007	6,525,086
2008	6,608,245
2009	6,672,159
2010	6,724,540
2011	6,767,900
2012	6,817,770
2013	6,882,400

Washington State Office of Financial Management

*State of Washington Office of Financial Management 2013 Population Trends. Accessed 7/8/14 from <u>http://www.ofm.wa.gov/</u> <u>pop/april1/poptrends.pdf</u>

Washington State Population Estimates By County, 2013^{*}

County	Estimate
Adams	19,200
Asotin	21,800
Benton	183,400
Chelan	73,600
Clallam	72,350
Clark	435,500
Columbia	4,100
Cowlitz	103,300
Douglas	39,280
Ferry	7,650
Franklin	84,800
Garfield	2,250
Grant	91,800
Grays Harbor	73,200
Island	79,700
Jefferson	30,275
King	1,981,900
Kitsap	254,500
Kittitas	41,900
Klickitat	20,700
Lewis	76,200
Lincoln	10,675
Mason	61,800
Okanogan	41,500
Pacific	21,000
Pend Oreille	13,150
Pierce	814,500
San Juan	16,000
Skagit	118,600
Skamania	11,300
Snohomish	730,500
Spokane	480,000
Stevens	43,800
Thurston	260,000
Wahkiakum	4,020
Walla Walla	59,500
Whatcom	205,800
Whitman	46,000
Yakima	247,250
Washington State	6,882,400

Washington State Office of Financial Management

*State of Washington Office of Financial Management April 1 Population Data Table. Accessed 7/8/14 from <u>http://www.ofm.wa.gov/pop/asr/default.asp</u>

Washington State Population By Age and Sex, 2013*

Age (years)	Male	Female	TOTAL
0-4	223,444	213,750	437,194
5-9	226,300	215,138	441,438
10-14	223,253	212,917	436,170
15-19	227,851	217,200	445,051
20-24	244,327	229,224	473,551
25-29	241,363	229,651	471,014
30-34	245,243	236,849	482,092
35-39	222,270	218,037	440,307
40-44	236,412	230,870	467,282
45-49	230,882	228,636	459,518
50-54	246,917	249,215	496,132
55-59	235,368	244,119	479,487
60-64	202,264	213,909	416,173
65-69	157,986	170,199	328,185
70-74	105,198	115,105	220,303
75-79	69,225	81,974	151,199
80-84	47,635	64,127	111,762
85 +	43,390	82,152	125,542
TOTAL	3,429,328	3,453,072	6,882,400

Washington State Office of Financial Management

*State of Washington Office of Financial Management April 1 Population Data Table. Accessed 7/8/14 from <u>http://www.ofm.wa.gov/</u> <u>pop/asr/default.asp</u>