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VERTICAL SEPARATION
Introduction/Summary

On-site sewage treatment and disposal serves approximately 25% of the homes in the U.S. and
continues to be utilized where community facilities are not available. Properly sited, designed, installed
and maintained on-site sewage systems provide a level of treatment and disposal that meets or exceeds
the treatment provided at most municipal treatment plants. Moreover, the treated effluent is returned to
the environment over a much broader area and therefore has a much smaller impact on the receiving
environment.

For effective treatment, it is essential that on-site sewage systems include, among other things,
provisions for an adequate vertical separation. Vertical separation primarily affects degradation of
organic nutrients (i.e. BOD5) and removal of bacteria and viruses. It also plays a role in converting
nitrogen to soluble nitrate (NO3

-) ions which can then readily migrate into the groundwater unless
denitrifying conditions are present.

This review and the conclusions are based on the all the research and review findings related to
vertical separation that this office could locate. There is an obvious need for further research under field
conditions. This research is necessary to refine our understanding of the fate of contaminants entering
onsite sewage systems in various soil types.

Definitions

1. Vertical Separation

Vertical separation is the depth of permeable, unsaturated soil (soil types 2-6, as per WAC
248-96-094) that exists between the bottom of a subsurface soil absorption system and some restrictive
or limiting layer or feature such as a water table, bedrock, hardpan, unacceptable fine textured soils, or
excessively permeable material.

2. Saturated Flow

Saturated flow in soil occurs when the water content of the soil is great enough to fill even the
largest continuous pores and then moves downward strictly by gravity. This movement is relatively
rapid in soils with coarse texture and/or good structure. Since the pores are filled with water, air is
prevented from entering, thereby promoting anaerobic conditions.

3. Unsaturated Flow

Unsaturated flow occurs when water moves through the micro pores and along surfaces of the
soil particles by capillary forces (matric potential). Water moves from the wetter to drier areas and
moves much slower than in saturated flow conditions. In addition, the larger pores are filled with air,
thus promoting aerobic conditions in the soil. It should be noted that there is a continuum from
unsaturated to saturated flow, and the definitions here are the extremes of the continuum.



4. Treatment of Sewage

Treatment is the process of purification by which the disease microorganisms, the organic
nutrients and the inorganic materials are removed from the wastewater before being returned to the
hydrologic cycle. Removal of pathogens is accomplished during slowed passage by their bonding to
soil particles and by natural die-off due to an unfavorable environment of aerobic soils and predatory
soil organisms.

The organic nutrients are metabolized by the soil organisms, a process that is nearly complete
under aerobic, unsaturated flow conditions. Removal efficiencies of the various inorganic compounds
varies with the compound and the soil conditions.

Nitrogen enters the system largely as ammonia, which is oxidized in the aerobic treatment
process to nitrate, a highly soluble ion. It then passes through most soils unaltered into the
groundwater. Most onsite sewage systems rely on dilution to lower the nitrate concentration to
drinking water standards.

Phosphate, the other common contaminant of domestic wastewater, is readily absorbed in the
soil. Most published field research shows that little or no phosphate moves from the onsite system to
groundwater even under saturated conditions. They further indicate that phosphate contamination is
limited to shallow groundwaters adjacent to onsite disposal systems where the soil is coarse-textured
and low in hydrous oxides, or where there is poor effluent distribution and rapid movement of effluent
away from the onsite sewage system.

Significance

Vertical separation has been shown to be essential for removal of pathogenic and biochemical
sewage contaminants to an acceptable level. In order to achieve vertical separation as defined, the
hydraulic loading must be low enough so that movement of the wastewater occurs under unsaturated
conditions. During unsaturated flow, water moves through the soil by matric forces, which hold the
wastewater in close proximity to the soil surfaces and the soil microorganisms, where treatment readily
occurs. Unsaturated flow also occurs much slower than saturated flow and therefore increases the
contact time of the wastewater with the unsaturated soil. In addition it permits aerobic conditions,
which promote faster and more complete treatment of the wastewater. There is a certain necessary
distance that wastewater must travel under unsaturated conditions in order to provide adequate
treatment. The actual distance required is discussed in other sections. Years of experience and research
have produced tables of maximum application rates for the various types of soil which will maintain
unsaturated flows.

The above conditions emphasize treatment without considering disposal. Disposal (i.e. moving
the effluent away from the site) is also important and goes hand in hand with treatment. When proper
disposal does not occur, vertical separation is reduced or even disappears due to saturation of the
receiving soil under the drainfield (also called groundwater mounding). As the vertical separation
disappears, treatment of the effluent is adversely affected. Therefore disposal is essential, but should
occur only after acceptable treatment is accomplished. Most effluent from an on-site sewage system
eventually enters the groundwater. It is therefore imperative for treatment to be accomplished to a
known and acceptable degree before discharge to the groundwater or surface water (where shellfish
and water recreation could be compromised without adequate treatment).



Horizontal movement is a common route of disposal for onsite sewage systems, therefore
horizontal separation distances are often used to provide public health protection of wells, springs and
surface waters. Research has shown (see next section) that vertical separation is much more effective in
removing contaminants and therefore protecting public health than horizontal separation, because
horizontal flow usually requires saturated conditions. By first providing treatment with adequate
vertical separation before horizontal flow, when it occurs, disposes of the effluent, degradation of
water recreation and shellfish growing areas by on-site sewage systems is also prevented.

Review of Research Findings

1. Saturated Flow

Hansel and Machmeier (1980) state that if the groundwater table or other barrier layer is too
close to the bottom of the trench, saturated flow will result.6 Under those conditions saturated flow
results due to groundwater mounding under the drainfield. An exception to this general pattern would
be where good disposal capability prevents the groundwater mounding, such as when a coarse sandy
soil overlies a shallow restrictive layer on a steep slope. Under saturated soil conditions, water flows
through the macropores, and can result in short circuiting of the soil purification process. This is of
particular concern in soils overlying creviced bedrock or high water tables.9 It is also important on
shoreline properties adjacent to shellfish and water recreation areas. Stiles and Crohurst (1927)
compared the movement of coliform organisms with that of the chemical uranin, from polluted
trenches intersecting the groundwater (saturated conditions). They found bacteria 232 feet and uranin
450 feet from the trench. They also concluded that the ultimate distance to which the pollution will be
carried is dependent upon a number of complex and interlocking factors, namely wet and dry weather,
with resulting rise and fall of the ground water; the length of each of these periods; the rate of the
groundwater flow (depending upon the "head," which in turn is dependent on the rainfall); and also the
factor of the viability of the organisms under conditions of moisture, pH, food supply, etc.3,11 Yates and
Yates (1989) cite reports of viral migration of 1600 meters (5249 feet) in karst terrain (porous
limestone with deep fissures) and 400 meters (1312 feet) in sandy soil (Gerba, 1984; Keswick and
Gerba, 1980).14

Macropore flow through saturated strongly structured soils or soils of the sandy textural family
may result in pathogen travel over relatively long distances with minimal treatment.10 Romero (1970)
cites a number of pit privy studies where the pits intersected, or were within close proximity to, the
water table. Elevated bacterial levels were temporarily detected up to 24.4 meters (80 feet) horizontally
from the source.11 Reneau et al. (1985) cite studies where vertical movement of the bacteria through a
fragipan was limited. Horizontal movement of effluent above the fragipan resulted in significant
removals of the bacteria but only after effluent had travelled horizontally a minimal distance of 6.1 to
12 meters (20 to 39 feet). The fecal coliform counts in water samples collected at 12 meters were only
slightly lower than in samples collected at 6.1 meters.10 Hagadorn et al (1978) found that flushes of
bacteria (reaching a horizontal distance of 15 meters (49 feet) coincided with rainfall events and a
water table rise to within 15 centimeters (6 inches) of the surface, and that macropores aided in the
rapid transport of the bacteria under saturated flow conditions.5

In summary, the following types of soil conditions would prevent safe soil treatment and
disposal. They each result in saturated flow conditions before adequate treatment can occur: (1)
shallow soils over creviced bedrock (or excessively permeable soils), (2) shallow soil over high
groundwater tables, and (3) impermeable soils.7



2. Unsaturated Flow

Unsaturated flow with effluent movement through small pores increases the efficiency of both
bacterial and viral removal due to slower average pore water velocities and increased surface contact
per net distance traveled.9 One of the keys to proper functioning of a septic system is ensuring that the
vertical separation between the bottom of the drainfield and the water table is large enough so that
unsaturated conditions will be maintained even during wet seasons. Maintenance of this unsaturated
zone helps to ensure that good aeration and slow travel of effluent will be achieved. Good aeration is
necessary to achieve decomposition of organic particles and compounds, biodegradation of detergents,
and die-off of bacteria and viruses. Slow travel gives opportunity for good contact between soil
particles and effluent, adsorption  of effluent constituents to soil particles, extended opportunity for
natural die-off of bacteria and inactivation of viruses, and biodegradation of degradable materials.2 The
efficiency of unsaturated flow conditions at removing biological contaminants has been demonstrated.
Unsaturated conditions in sand columns were more effective for virus inactivation than saturated
conditions (Lance et al 1976; Lance and Gerba, 1980).9

Reneau et al (1989) summarizes and restates the conditions that several researchers (Bouma et
al, 1972; Caldwell 1937, 1938a & 1938b; Caldwell & Parr, 1937) concluded were important for
unsaturated flow: uniform effluent distribution, development of a surface clogging mat (in coarse-
textured soils), well drained soils, and moisture deficits.9 It should be noted that the clogging mat is
most needed (and least likely to develop) in the coarse-textured soils and therefore some other means
of uniform distribution needs to be used. Stewart and Reneau (1988) reported that the migration of
fecal coliforms is restricted even during high water periods if the STE (septic tank effluent) is uniformly
distributed, the OSWDS (onsite wastewater disposal system) is placed in the more biologically active
and aerobic soil horizons, and the unsaturated flow is maximized.12

Another key factor regulating bacterial removal from wastewater during percolation is the
liquid flow regime in the soil. Unsaturated (as compared to saturated) flow involves liquid movement
through only the smaller soil pores, increased contact of wastewater with soil particles as well as
increased liquid detention time in the soil. Unsaturated flow can be attained by two general methods:
(1) dosing uniformly over the field surface (particularly at low doses); and (2) development of soil
surface clogging (as created by organic material buildup or smearing of the infiltrative surface) which
decreases the infiltration rate into the soil, promoting unsaturated flow.7

3. Amount of Vertical Separation Required for Microbial

What is an adequate separation between the bottom of the drainfield and the wet season water
table? The separation distance required by agencies varies widely from state to state around the U.S.,
and the evidence is not yet completely assembled to say exactly what separation is adequate in the
range of soil conditions, effluent qualities, and effluent loading rates that may be found around the
country. Meanwhile the USEPA Design Manual recommends a minimum water-unsaturated soil
thickness of 24 to 48 inches.2 In column studies, viral deactivation occurs within 40 centimeters (16
inches) with unsaturated flow (Lance et al, 1976; Lance and Gerba,1984).9 Under unsaturated flow
conditions, bacteria can be adequately removed within .9 to 1.2 meters (3 to 4 feet) of effluent travel
through soils (USEPA, 1980; Hansel and Machmeier, 1980). Hagedorn et al (1981) reviewed a report
by Bouma et al (1972) that examined 19 subsurface soil disposal systems. Fecal coliforms were
reduced to background levels within 61 centimeters (2 feet) of the trench bottom. Even in a sandy soil,
Ziebell et al (1974) reported a 3000-fold reduction in bacteria levels 38 centimeters (15 inches) below
the trench bottom and 30 centimeters (1 foot) laterally.10



Low pressure distribution can be used to provide equal distribution over the entire drainfield
surface where site conditions yield minimal vertical separation. Stewart and Reneau (1984) installed a
shallow-placed, LPD (low pressure distribution) system to increase the unsaturated zone in a Typic
Ochraquult (high water table) soil. After 2 years, fecal coliforms had been detected in only 5% of the
150 samples collected from shallow wells (150 centimeters deep). Samples that contained fecal
coliforms were restricted to periods of high water tables and were confined to the effluent distribution
area.10 Stewart and Reneau (1988) installed and tested a low pressure distribution system in soils with a
fluctuating high water table. Few fecal coliforms were present at the 1.5 meters (5 feet) depth within
the OSWDS even during the period of highest water tables, January through March of 1982, when
macropore flow would be at a maximum.12

Brown et al (1979) noted that most fecal coliform bacteria and coliphage virus were removed
within the first 30 centimeters (1 foot) of unsaturated soil beneath absorption trenches in east Texas.
Occasionally a few coliforms were observed 120 centimeters (4 feet) below the trenches. Cogger et al
(1988) and Moe et al (1984) found substantial although not total removal of bacteria and viruses in a
sandy soil on the North Carolina coast where the water table fluctuated from 30 to 90 centimeters (1 to
3 feet) beneath the absorption trenches. Microbial removal was 1 - 2.5 orders of magnitude less
beneath an adjacent system where the ground water table was 30 centimeters higher (i.e. at or near the
bottom of the absorption trenches). In laboratory studies, Magdoff et al (1974) noted complete
removal of fecal coliforms and fecal streptococci in a 90 centimeters (3 foot) column containing sand
underlain by silt loam, while Willman et al (1981) obtained substantial but incomplete coliform removal
in a series of 60 centimeter (2 foot) columns containing a variety of sand and clay mixtures. These
(field and column) studies, along with others not reported here, indicate that substantial bacterial and
viral removal occur within the first foot of unsaturated soil, and removal is nearly complete within 60 to
120 centimeters (2 to 4 feet) beneath the trenches.4

Tyler et al (1977) stated that at a distance of 1 foot into the soil surrounding the trench there
was a 3 log reduction in bacterial numbers and within the second foot counts were to the acceptable
range for a fully treated wastewater. Some bacteria and viruses in the wastewater are pathogens. Their
movement during unsaturated flow is expected to be limited to within a meter (40 inches).13 Studies
have shown that where it is sufficiently unsaturated, 60 to 90 centimeters (2 to 3 feet) of soil is
adequate to remove nearly all fecal indicator bacteria and viruses.8 Lysimeter tests of the impact of
septic field leachate on groundwater indicates that coliphage viruses and fecal coliform bacteria were
removed by passage through approximately 100 centimeters (40 inches) of any of the soils tested.1

4. Chemical Treatment Related to Vertical Separation

Brown et al (1977) reported that heavy metals accumulated immediately adjacent to the point
of application in the soil. Phosphates moved only slowly in the soil and their movement was greatest in
sandy soils. Under reduced (anaerobic) conditions, ammonia accumulated in the soils and moved only
about as far and as fast as phosphates. When the soil was allowed to become oxidized large amounts of
nitrogen were converted to nitrate which rapidly leached to the groundwater. Therefore nitrate leachate
was the greatest environmental hazard identified in this study.1 Reneau et al (1985) summarized the
research on processes and transport through the soil of nitrogen and phosphorous. They concur with 
findings of Brown et al (1977).10



Vertical Separation Requirements in Various

The amount of vertical separation required in various states is highly variable. Where the
separation is allowed to be less than two feet, there is no statement of the technical justification for
doing so. The following data were extracted from the regulations from the listed states.

Alabama 1.5 feet Minimum

Colorado 4 feet May be reduced if designed by a registered engineer and
approved by the local board of health (where local regulations
permit such variances for exclusively domestic wastes).

Florida 3.5 feet To impervious layer.

2 feet To highest level of the water table.

Idaho 3-6 feet To water table or fractured bedrock, depending on soil type.

4 feet To an impervious layer

Louisiana 2 feet To the maximum level of water table.

4 feet To impervious layer.

Maine 1-2 feet Depending on soil and subsoil

New Jersey 4 feet

North Carolina 1 foot

Oregon 4 feet To permanent water table

.5 foot To impervious layer when bottom of trenches are in rapidly or
very rapidly permeable soils.

0 feet To temporary water table (dries up for period of time each year)
or permanent water table where it is determined by groundwater
study that degradation of the groundwater and public health
hazard will not occur and where water table is 2 feet below the
ground surface.

Pennsylvania 4 feet

South Dakota 4 feet

Utah 2 feet



West Virginia 3 feet

Wisconsin 3 feet

Wyoming 4 feet

Summary and Conclusions

The amount of vertical separation necessary is still being debated, as there is disagreement over
the degree of treatment needed. Research so far shows that .61 to 1.2 meters (2 to 4 feet) of
vertical separation will adequately remove bacteria (<200 fecal coliforms per 100 milliliters)
depending on soil type and conditions. In order to assure an unsaturated zone of 2 feet, it usually
is necessary to construct a system with even greater separation in order to account for
groundwater mounding.  Therefore, the scientific literature is strongly indicating a final (as
constructed) vertical separation that is greater than 2 feet. It should also be noted that there is
often loss of soil depth during lot development, making it reasonable to require additional vertical
separation in the preliminary design to allow for such damage.
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